Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

4 Janelia Publications

Showing 1-4 of 4 results
Your Criteria:
    07/26/22 | A scalable and modular automated pipeline for stitching of large electron microscopy datasets.
    Mahalingam G, Torres R, Kapner D, Trautman ET, Fliss T, Seshamani S, Perlman E, Young R, Kinn S, Buchanan J, Takeno MM, Yin W, Bumbarger DJ, Gwinn RP, Nyhus J, Lein E, Smith SJ, Reid RC, Khairy KA, Saalfeld S, Collman F, Macarico da Costa N
    eLife. 2022 Jul 26;11:. doi: 10.7554/eLife.76534

    Serial-section electronmicroscopy (ssEM) is themethod of choice for studyingmacroscopic biological samples at extremely high resolution in three dimensions. In the nervous system, nanometer-scale images are necessary to reconstruct dense neural wiring diagrams in the brain, so called connectomes. In order to use this data, consisting of up to 10 individual EM images, it must be assembled into a volume, requiring seamless 2D stitching from each physical section followed by 3D alignment of the stitched sections. The high throughput of ssEM necessitates 2D stitching to be done at the pace of imaging, which currently produces tens of terabytes per day. To achieve this, we present a modular volume assembly software pipeline ASAP (Assembly Stitching and Alignment Pipeline) that is scalable to datasets containing petabytes of data and parallelized to work in a distributed computational environment. The pipeline is built on top of the Render (27) services used in the volume assembly of the brain of adult Drosophilamelanogaster (30). It achieves high throughput by operating on themeta-data and transformations of each image stored in a database, thus eliminating the need to render intermediate output. ASAP ismodular, allowing for easy incorporation of new algorithms without significant changes in the workflow. The entire software pipeline includes a complete set of tools for stitching, automated quality control, 3D section alignment, and final rendering of the assembled volume to disk. ASAP has been deployed for continuous stitching of several large-scale datasets of the mouse visual cortex and human brain samples including one cubic millimeter of mouse visual cortex (28; 8) at speeds that exceed imaging. The pipeline also has multi-channel processing capabilities and can be applied to fluorescence and multi-modal datasets like array tomography.

    View Publication Page
    07/08/22 | Architecture and dynamics of a novel desmosome-endoplasmic reticulum organelle
    Navaneetha Krishnan Bharathan , William Giang , Jesse S. Aaron , Satya Khuon , Teng-Leong Chew , Stephan Preibisch , Eric T. Trautman , Larissa Heinrich , John Bogovic , Davis Bennett , David Ackerman , Woohyun Park , Alyson Petruncio , Aubrey V. Weigel , Stephan Saalfeld , COSEM Project Team , A. Wayne Vogl , Sara N. Stahley , Andrew P. Kowalczyk
    bioRxiv. 2022 Jul 08:. doi: 10.1101/2022.07.07.499185

    The endoplasmic reticulum (ER) forms a dynamic network that contacts other cellular membranes to regulate stress responses, calcium signaling, and lipid transfer. Using high-resolution volume electron microscopy, we find that the ER forms a previously unknown association with keratin intermediate filaments and desmosomal cell-cell junctions. Peripheral ER assembles into mirror image-like arrangements at desmosomes and exhibits nanometer proximity to keratin filaments and the desmosome cytoplasmic plaque. ER tubules exhibit stable associations with desmosomes, and perturbation of desmosomes or keratin filaments alters ER organization and mobility. These findings indicate that desmosomes and the keratin cytoskeleton pattern the distribution of the ER network. Overall, this study reveals a previously unknown subcellular architecture defined by the structural integration of ER tubules with an epithelial intercellular junction.

    View Publication Page
    03/27/22 | Petascale pipeline for precise alignment of images from serial section electron microscopy.
    Sergiy Popovych , Thomas Macrina , Nico Kemnitz , Manuel Castro , Barak Nehoran , Zhen Jia , J. Alexander Bae , Eric Mitchell , Shang Mu , Eric T. Trautman , Stephan Saalfeld , Kai Li , Sebastian Seung
    bioRxiv. 2022 Mar 27:. doi: 10.1101/2022.03.25.485816

    The reconstruction of neural circuits from serial section electron microscopy (ssEM) images is being accelerated by automatic image segmentation methods. Segmentation accuracy is often limited by the preceding step of aligning 2D section images to create a 3D image stack. Precise and robust alignment in the presence of image artifacts is challenging, especially as datasets are attaining the petascale. We present a computational pipeline for aligning ssEM images with several key elements. Self-supervised convolutional nets are trained via metric learning to encode and align image pairs, and they are used to initialize iterative fine-tuning of alignment. A procedure called vector voting increases robustness to image artifacts or missing image data. For speedup the series is divided into blocks that are distributed to computational workers for alignment. The blocks are aligned to each other by composing transformations with decay, which achieves a global alignment without resorting to a time-consuming global optimization. We apply our pipeline to a whole fly brain dataset, and show improved accuracy relative to prior state of the art. We also demonstrate that our pipeline scales to a cubic millimeter of mouse visual cortex. Our pipeline is publicly available through two open source Python packages.

    View Publication Page
    03/26/22 | Transverse endoplasmic reticulum expansion in hereditary spastic paraplegia corticospinal axons.
    Zhu P, Hung H, Batchenkova N, Nixon-Abell J, Henderson J, Zheng P, Renvoisé B, Pang S, Xu CS, Saalfeld S, Funke J, Xie Y, Svara F, Hess HF, Blackstone C
    Human Molecular Genetics. 2022 Mar 26:. doi: 10.1093/hmg/ddac072

    Hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders affecting the longest corticospinal axons (SPG1-86 plus others), with shared manifestations of lower extremity spasticity and gait impairment. Common autosomal dominant HSPs are caused by mutations in genes encoding the microtubule-severing ATPase spastin (SPAST; SPG4), the membrane-bound GTPase atlastin-1 (ATL1; SPG3A), and the reticulon-like, microtubule-binding protein REEP1 (REEP1; SPG31). These proteins bind one another and function in shaping the tubular endoplasmic reticulum (ER) network. Typically, mouse models of HSPs have mild, later-onset phenotypes, possibly reflecting far shorter lengths of their corticospinal axons relative to humans. Here, we have generated a robust, double mutant mouse model of HSP in which atlastin-1 is genetically modified with a K80A knock-in (KI) missense change that abolishes its GTPase activity, while its binding partner Reep1 is knocked out. Atl1KI/KI/Reep1-/- mice exhibit early-onset and rapidly progressive declines in several motor function tests. Also, ER in mutant corticospinal axons dramatically expands transversely and periodically in a mutation dosage-dependent manner to create a ladder-like appearance, based on reconstructions of focused ion beam-scanning electron microscopy datasets using machine learning-based auto-segmentation. In lockstep with changes in ER morphology, axonal mitochondria are fragmented and proportions of hypophosphorylated neurofilament H and M subunits are dramatically increased in Atl1KI/KI/Reep1-/- spinal cord. Co-occurrence of these findings links ER morphology changes to alterations in mitochondrial morphology and cytoskeletal organization. Atl1KI/KI/Reep1-/- mice represent an early-onset rodent HSP model with robust behavioral and cellular readouts for testing novel therapies.

    View Publication Page