Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    09/16/24 | Synaptic Specializations at Dopamine Release Sites Orchestrate Efficient and Precise Neuromodulatory Signaling
    Bulumulla C, Walpita D, Iyer N, Eddison M, Patel R, Alcor D, Ackerman D, Beyene AG
    bioRxiv. 2024 Sep 16:. doi: 10.1101/2024.09.16.613338

    Dopamine is a key chemical neuromodulator that plays vital roles in various brain functions. Traditionally, neuromodulators like dopamine are believed to be released in a diffuse manner and are not commonly associated with synaptic structures where pre- and postsynaptic processes are closely aligned. Our findings challenge this conventional view. Using single-bouton optical measurements of dopamine release, we discovered that dopamine is predominantly released from varicosities that are juxtaposed against the processes of their target neurons. Dopamine axons specifically target neurons expressing dopamine receptors, forming synapses to release dopamine. Interestingly, varicosities that were not directly apposed to dopamine receptor-expressing processes or associated with neurons lacking dopamine receptors did not release dopamine, regardless of their vesicle content. The ultrastructure of dopamine release sites share common features of classical synapses. We further show that the dopamine released at these contact sites induces a precise, dopamine-gated biochemical response in the target processes. Our results indicate that dopamine release sites share key characteristics of conventional synapses that enable relatively precise and efficient neuromodulation of their targets.

    View Publication Page
    08/20/20 | Rational design of bioavailable photosensitizers for manipulation and imaging of biological systems.
    Binns TC, Ayala AX, Grimm JB, Tkachuk AN, Castillon GA, Phan S, Zhang L, Brown TA, Liu Z, Adams SR, Ellisman MH, Koyama M, Lavis LD
    Cell Chemical Biology. 2020 Aug 20;27(8):1063-72. doi: 10.1016/j.chembiol.2020.07.001

    Light-mediated chemical reactions are powerful methods for manipulating and interrogating biological systems. Photosensitizers, compounds that generate reactive oxygen species upon excitation with light, can be utilized for numerous biological experiments, but the repertoire of bioavailable photosensitizers is limited. Here, we describe the synthesis, characterization, and utility of two photosensitizers based upon the widely used rhodamine scaffold and demonstrate their efficacy for chromophore-assisted light inactivation, cell ablation in culture and in vivo, and photopolymerization of diaminobenzidine for electron microscopy. These chemical tools will facilitate a broad range of applications spanning from targeted destruction of proteins to high-resolution imaging.

    View Publication Page
    07/27/20 | A general method to optimize and functionalize red-shifted rhodamine dyes.
    Grimm JB, Tkachuk AN, Xie L, Choi H, Mohar B, Falco N, Schaefer K, Patel R, Zheng Q, Liu Z, Lippincott-Schwartz J, Brown TA, Lavis LD
    Nature Methods. 2020 Jul 27:. doi: 10.1038/s41592-020-0909-6

    Expanding the palette of fluorescent dyes is vital to push the frontier of biological imaging. Although rhodamine dyes remain the premier type of small-molecule fluorophore owing to their bioavailability and brightness, variants excited with far-red or near-infrared light suffer from poor performance due to their propensity to adopt a lipophilic, nonfluorescent form. We report a framework for rationalizing rhodamine behavior in biological environments and a general chemical modification for rhodamines that optimizes long-wavelength variants and enables facile functionalization with different chemical groups. This strategy yields red-shifted 'Janelia Fluor' (JF) dyes useful for biological imaging experiments in cells and in vivo.

    View Publication Page