Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

53 Janelia Publications

Showing 1-10 of 53 results
Your Criteria:
    09/18/23 | Neural circuit mechanisms for transforming learned olfactory valences into wind-oriented movement
    Yoshinori Aso , Daichi Yamada , Daniel Bushey , Karen Hibbard , Megan Sammons , Hideo Otsuna , Yichun Shuai , Toshihide Hige
    eLife. 2023 Sep 18:. doi: 10.7554/eLife.85756

    How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After training, disinhibition from the appetitive-memory MBONs enhances the response of UpWiNs to reward-predicting odors. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was initiated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.

    View Publication Page
    04/25/23 | PEELing: an integrated and user-centric platform for cell-surface proteomics analysis
    Xi Peng , Jody Clements , Zuzhi Jiang , Stephan Preibisch , Jiefu Li
    bioRxiv. 2023 Apr 25:. doi: 10.1101/2023.04.21.537871

    Proteins localized at the cellular interface mediate cell-cell communication and thus control many aspects of physiology in multicellular organisms. Cell-surface proteomics allows biologists to comprehensively identify proteins on the cell surface and survey their dynamics in physiological and pathological conditions. PEELing provides an integrated package and user-centric web service for analyzing cell-surface proteomics data. With a streamlined and automated workflow, PEELing evaluates data quality using curated references, performs cutoff analysis to remove contaminants, connects to databases for functional annotation, and generates data visualizations. Together with chemical and transgenic tools, PEELing completes a pipeline making cell-surface proteomics analysis handy for every lab.

    View Publication Page
    07/21/22 | NeuronBridge: an intuitive web application for neuronal morphology search across large data sets
    Jody Clements , Cristian Goina , Philip M. Hubbard , Takashi Kawase , Donald J. Olbris , Hideo Otsuna , Robert Svirskas , Konrad Rokicki
    bioRxiv. 2022 Jul 21:. doi: 10.1101/2022.07.20.500311

    Neuroscience research in Drosophila is benefiting from large-scale connectomics efforts using electron microscopy (EM) to reveal all the neurons in a brain and their connections. In order to exploit this knowledge base, researchers target individual neurons and study their function. Therefore, vast libraries of fly driver lines expressing fluorescent reporter genes in sets of neurons have been created and imaged using confocal light microscopy (LM). However, creating a fly line for driving gene expression within a single neuron found in the EM connectome remains a challenge, as it typically requires identifying a pair of fly lines where only the neuron of interest is expressed in both. This task and other emerging scientific workflows require finding similar neurons across large data sets imaged using different modalities. Here, we present NeuronBridge, a web application for easily and rapidly finding putative morphological matches between large datasets of neurons imaged using different modalities. We describe the functionality and construction of the NeuronBridge service, including its user-friendly GUI, data model, serverless cloud architecture, and massively parallel image search engine. NeuronBridge is openly accessible at http://neuronbridge.janelia.org/.

    View Publication Page
    11/01/21 | Whole-cell organelle segmentation in volume electron microscopy.
    Heinrich L, Bennett D, Ackerman D, Park W, Bogovic J, Eckstein N, Petruncio A, Clements J, Pang S, Xu CS, Funke J, Korff W, Hess HF, Lippincott-Schwartz J, Saalfeld S, Weigel AV, COSEM Project Team
    Nature. 2021 Nov 01;599(7883):141-46. doi: 10.1038/s41586-021-03977-3

    Cells contain hundreds of organelles and macromolecular assemblies. Obtaining a complete understanding of their intricate organization requires the nanometre-level, three-dimensional reconstruction of whole cells, which is only feasible with robust and scalable automatic methods. Here, to support the development of such methods, we annotated up to 35 different cellular organelle classes-ranging from endoplasmic reticulum to microtubules to ribosomes-in diverse sample volumes from multiple cell types imaged at a near-isotropic resolution of 4 nm per voxel with focused ion beam scanning electron microscopy (FIB-SEM). We trained deep learning architectures to segment these structures in 4 nm and 8 nm per voxel FIB-SEM volumes, validated their performance and showed that automatic reconstructions can be used to directly quantify previously inaccessible metrics including spatial interactions between cellular components. We also show that such reconstructions can be used to automatically register light and electron microscopy images for correlative studies. We have created an open data and open-source web repository, 'OpenOrganelle', to share the data, computer code and trained models, which will enable scientists everywhere to query and further improve automatic reconstruction of these datasets.

    View Publication Page
    09/07/20 | A connectome and analysis of the adult Drosophila central brain.
    Scheffer LK, Xu CS, Januszewski M, Lu Z, Takemura S, Hayworth KJ, Huang GB, Shinomiya K, Maitlin-Shepard J, Berg S, Clements J, Hubbard PM, Katz WT, Umayam L, Zhao T, Ackerman D, Blakely T, Bogovic J, Dolafi T, Kainmueller D, Kawase T, Khairy KA, Leavitt L, Li PH, Lindsey L, Neubarth N, Olbris DJ, Otsuna H, Trautman ET, Ito M, Bates AS, Goldammer J, Wolff T, Svirskas R, Schlegel P, Neace E, Knecht CJ, Alvarado CX, Bailey DA, Ballinger S, Borycz JA, Canino BS, Cheatham N, Cook M, Dreher M, Duclos O, Eubanks B, Fairbanks K, Finley S, Forknall N, Francis A, Hopkins GP, Joyce EM, Kim S, Kirk NA, Kovalyak J, Lauchie SA, Lohff A, Maldonado C, Manley EA, McLin S, Mooney C, Ndama M, Ogundeyi O, Okeoma N, Ordish C, Padilla N, Patrick CM, Paterson T, Phillips EE, Phillips EM, Rampally N, Ribeiro C, Robertson MK, Rymer JT, Ryan SM, Sammons M, Scott AK, Scott AL, Shinomiya A, Smith C, Smith K, Smith NL, Sobeski MA, Suleiman A, Swift J, Takemura S, Talebi I, Tarnogorska D, Tenshaw E, Tokhi T, Walsh JJ, Yang T, Horne JA, Li F, Parekh R, Rivlin PK, Jayaraman V, Costa M, Jefferis GS, Ito K, Saalfeld S, George R, Meinertzhagen IA, Rubin GM, Hess HF, Jain V, Plaza SM
    Elife. 2020 Sep 07;9:. doi: 10.7554/eLife.57443

    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly . Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain.

    View Publication Page
    02/17/20 | Behavioral features of motivated response to alcohol in Drosophila.
    Catalano JL, Mei N, Azanchi R, Song S, Blackwater T, Heberlein U, Kaun KR
    bioRxiv. 2020 Feb 17:

    Animals avoid predators and find the best food and mates by learning from the consequences of their behavior. However, reinforcers are not always uniquely appetitive or aversive but can have complex properties. Most intoxicating substances fall within this category; provoking aversive sensory and physiological reactions while simultaneously inducing overwhelming appetitive properties. Here we describe the subtle behavioral features associated with continued seeking for alcohol despite aversive consequences. We developed an automated runway apparatus to measure how Drosophila respond to consecutive exposures of a volatilized substance. Behavior within this Behavioral Expression of Ethanol Reinforcement Runway (BEER Run) demonstrated a defined shift from aversive to appetitive responses to volatilized ethanol. Behavioral metrics attained by combining computer vision and machine learning methods, reveal that a subset of 9 classified behaviors and component behavioral features associate with this shift. We propose this combination of 9 be

    View Publication Page
    10/31/19 | ShuTu: Open-source software for efficient and accurate reconstruction of dendritic morphology.
    Jin DZ, Zhao T, Hunt DL, Tillage RP, Hsu C, Spruston N
    Frontiers in Neuroinformatics. 2019 Oct 31;13:68. doi: 10.3389/fninf.2019.00068

    Neurons perform computations by integrating inputs from thousands of synapses-mostly in the dendritic tree-to drive action potential firing in the axon. One fruitful approach to studying this process is to record from neurons using patch-clamp electrodes, fill the recorded neurons with a substance that allows subsequent staining, reconstruct the three-dimensional architectures of the dendrites, and use the resulting functional and structural data to develop computer models of dendritic integration. Accurately producing quantitative reconstructions of dendrites is typically a tedious process taking many hours of manual inspection and measurement. Here we present ShuTu, a new software package that facilitates accurate and efficient reconstruction of dendrites imaged using bright-field microscopy. The program operates in two steps: (1) automated identification of dendritic processes, and (2) manual correction of errors in the automated reconstruction. This approach allows neurons with complex dendritic morphologies to be reconstructed rapidly and efficiently, thus facilitating the use of computer models to study dendritic structure-function relationships and the computations performed by single neurons.

    View Publication Page
    04/29/19 | Visually guided behavior and optogenetically induced learning in head-fixed flies exploring a virtual landscape.
    Haberkern H, Basnak MA, Ahanonu B, Schauder D, Cohen JD, Bolstad M, Bruns C, Jayaraman V
    Current Biology : CB. 2019 Apr 29:. doi: 10.1016/j.cub.2019.04.033

    Studying the intertwined roles of sensation, experience, and directed action in navigation has been facilitated by the development of virtual reality (VR) environments for head-fixed animals, allowing for quantitative measurements of behavior in well-controlled conditions. VR has long featured in studies of Drosophila melanogaster, but these experiments have typically allowed the fly to change only its heading in a visual scene and not its position. Here we explore how flies move in two dimensions (2D) using a visual VR environment that more closely captures an animal's experience during free behavior. We show that flies' 2D interaction with landmarks cannot be automatically derived from their orienting behavior under simpler one-dimensional (1D) conditions. Using novel paradigms, we then demonstrate that flies in 2D VR adapt their behavior in response to optogenetically delivered appetitive and aversive stimuli. Much like free-walking flies after encounters with food, head-fixed flies exploring a 2D VR respond to optogenetic activation of sugar-sensing neurons by initiating a local search, which appears not to rely on visual landmarks. Visual landmarks can, however, help flies to avoid areas in VR where they experience an aversive, optogenetically generated heat stimulus. By coupling aversive virtual heat to the flies' presence near visual landmarks of specific shapes, we elicit selective learned avoidance of those landmarks. Thus, we demonstrate that head-fixed flies adaptively navigate in 2D virtual environments, but their reliance on visual landmarks is context dependent. These behavioral paradigms set the stage for interrogation of the fly brain circuitry underlying flexible navigation in complex multisensory environments.

    View Publication Page
    03/08/19 | Neural evolution of context-dependent fly song.
    Ding Y, Lillvis JL, Cande J, Berman GJ, Arthur BJ, Long X, Xu M, Dickson BJ, Stern DL
    Current Biology : CB. 2019 Mar 08;29(7):1089-99. doi: 10.1016/j.cub.2019.02.019

    It is unclear where in the nervous system evolutionary changes tend to occur. To localize the source of neural evolution that has generated divergent behaviors, we developed a new approach to label and functionally manipulate homologous neurons across Drosophila species. We examined homologous descending neurons that drive courtship song in two species that sing divergent song types and localized relevant evolutionary changes in circuit function downstream of the intrinsic physiology of these descending neurons. This evolutionary change causes different species to produce divergent motor patterns in similar social contexts. Artificial stimulation of these descending neurons drives multiple song types, suggesting that multifunctional properties of song circuits may facilitate rapid evolution of song types.

    View Publication Page
    Svoboda LabDruckmann LabScientific Computing Software
    01/15/19 | An orderly single-trial organization of population dynamics in premotor cortex predicts behavioral variability.
    Wei Z, Inagaki H, Li N, Svoboda K, Druckmann S
    Nature Communications. 2019 Jan 15;10(1):216. doi: 10.1038/s41467-018-08141-6

    Animals are not simple input-output machines. Their responses to even very similar stimuli are variable. A key, long-standing question in neuroscience is to understand the neural correlates of such behavioral variability. To reveal these correlates, behavior and neural population activity must be related to one another on single trials. Such analysis is challenging due to the dynamical nature of brain function (e.g., in decision making), heterogeneity across neurons and limited sampling of the relevant neural population. By analyzing population recordings from mouse frontal cortex in perceptual decision-making tasks, we show that an analysis approach tailored to the coarse grain features of the dynamics is able to reveal previously unrecognized structure in the organization of population activity. This structure is similar on error and correct trials, suggesting dynamics that may be constrained by the underlying circuitry, is able to predict multiple aspects of behavioral variability and reveals long time-scale modulation of population activity.

    View Publication Page