Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

1832 Janelia Publications

Showing 1781-1790 of 1832 results
Truman LabRiddiford Lab
08/22/08 | Developmental model of static allometry in holometabolous insects.
Shingleton AW, Mirth CK, Bates PW
Proceedings of the Royal Society B: Biological Sciences. 2008 Aug 22;275(1645):1875-85. doi: 10.1098/rspb.2008.0227

The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the ’allometric coefficient’, is controlled by the relative sensitivity of an organ’s growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ’s final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships.

View Publication Page
Magee Lab
08/15/08 | Altered synaptic and non-synaptic properties of CA1 pyramidal neurons in Kv4.2 knockout mice.
Andrásfalvy BK, Makara JK, Johnston D, J.C. Magee
The Journal of Physiology. 2008 Aug 15;586(16):3881-92. doi: 10.1113/jphysiol.2008.154336

Back-propagating action potentials (bAPs) travelling from the soma to the dendrites of neurons are involved in various aspects of synaptic plasticity. The distance-dependent increase in Kv4.2-mediated A-type K(+) current along the apical dendrites of CA1 pyramidal cells (CA1 PCs) is responsible for the attenuation of bAP amplitude with distance from the soma. Genetic deletion of Kv4.2 reduced dendritic A-type K(+) current and increased the bAP amplitude in distal dendrites. Our previous studies revealed that the amplitude of unitary Schaffer collateral inputs increases with distance from the soma along the apical dendrites of CA1 PCs. We tested the hypothesis that the weight of distal synapses is dependent on dendritic Kv4.2 channels. We compared the amplitude and kinetics of mEPSCs at different locations on the main apical trunk of CA1 PCs from wild-type (WT) and Kv4.2 knockout (KO) mice. While wild-type mice showed normal distance-dependent scaling, it was missing in the Kv4.2 KO mice. We also tested whether there was an increase in inhibition in the Kv4.2 knockout, induced in an attempt to compensate for a non-specific increase in neuronal excitability (after-polarization duration and burst firing probability were increased in KO). Indeed, we found that the magnitude of the tonic GABA current increased in Kv4.2 KO mice by 53% and the amplitude of mIPSCs increased by 25%, as recorded at the soma. Our results suggest important roles for the dendritic K(+) channels in distance-dependent adjustment of synaptic strength as well as a primary role for tonic inhibition in the regulation of global synaptic strength and membrane excitability.

View Publication Page
08/06/08 | Reporting neural activity with genetically encoded calcium indicators.
Hires SA, Tian L, Looger LL
Brain Cell Biology. 2008 Aug 6;36(1-4):69-86. doi: 10.1007/s11068-008-9029-4

Genetically encoded calcium indicators (GECIs), based on recombinant fluorescent proteins, have been engineered to observe calcium transients in living cells and organisms. Through observation of calcium, these indicators also report neural activity. We review progress in GECI construction and application, particularly toward in vivo monitoring of sparse action potentials (APs). We summarize the extrinsic and intrinsic factors that influence GECI performance. A simple model of GECI response to AP firing demonstrates the relative significance of these factors. We recommend a standardized protocol for evaluating GECIs in a physiologically relevant context. A potential method of simultaneous optical control and recording of neuronal circuits is presented.

View Publication Page
07/15/08 | Tools for neuroanatomy and neurogenetics in Drosophila.
Pfeiffer BD, Jenett A, Hammonds AS, Ngo TB, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR, Mungall C, Svirskas R, Kadonaga JT, Doe CQ, Eisen MB, Celniker SE, Rubin GM
Proceedings of the National Academy of Sciences of the United States of America. 2008 Jul 15;105:9715-20. doi:

We demonstrate the feasibility of generating thousands of transgenic Drosophila melanogaster lines in which the expression of an exogenous gene is reproducibly directed to distinct small subsets of cells in the adult brain. We expect the expression patterns produced by the collection of 5,000 lines that we are currently generating to encompass all neurons in the brain in a variety of intersecting patterns. Overlapping 3-kb DNA fragments from the flanking noncoding and intronic regions of genes thought to have patterned expression in the adult brain were inserted into a defined genomic location by site-specific recombination. These fragments were then assayed for their ability to function as transcriptional enhancers in conjunction with a synthetic core promoter designed to work with a wide variety of enhancer types. An analysis of 44 fragments from four genes found that >80% drive expression patterns in the brain; the observed patterns were, on average, comprised of <100 cells. Our results suggest that the D. melanogaster genome contains >50,000 enhancers and that multiple enhancers drive distinct subsets of expression of a gene in each tissue and developmental stage. We expect that these lines will be valuable tools for neuroanatomy as well as for the elucidation of neuronal circuits and information flow in the fly brain.

View Publication Page
07/09/08 | A FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping.
Atasoy D, Aponte Y, Su HH, Sternson SM
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2008 Jul 9;28(28):7025-30. doi: 10.1523/JNEUROSCI.1954-08.2008
07/04/08 | The spread of Ras activity triggered by activation of a single dendritic spine.
Harvey CD, Yasuda R, Zhong H, Svoboda K
Science. 2008 Jul 4;321(5885):136-40. doi: 10.1126/science.1159675

In neurons, individual dendritic spines isolate N-methyl-d-aspartate (NMDA) receptor-mediated calcium ion (Ca2+) accumulations from the dendrite and other spines. However, the extent to which spines compartmentalize signaling events downstream of Ca2+ influx is not known. We combined two-photon fluorescence lifetime imaging with two-photon glutamate uncaging to image the activity of the small guanosine triphosphatase Ras after NMDA receptor activation at individual spines. Induction of long-term potentiation (LTP) triggered robust Ca2+-dependent Ras activation in single spines that decayed in approximately 5 minutes. Ras activity spread over approximately 10 micrometers of dendrite and invaded neighboring spines by diffusion. The spread of Ras-dependent signaling was necessary for the local regulation of the threshold for LTP induction. Thus, Ca2+-dependent synaptic signals can spread to couple multiple synapses on short stretches of dendrite.

View Publication Page
07/01/08 | Crystallization and preliminary x-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2.
Rodríguez Guilbe MM, Alfaro Malavé EC, Akerboom J, Marvin JS, Looger LL, Schreiter ER
Acta Crystallographica. Section F, Structural Biology and Crystallization Communications. 2008 Jul 1;64:629-31. doi: 10.1107/S1744309108016059

Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, this protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 A resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1.

View Publication Page
06/01/08 | Action recognition using ballistic dynamics.
Vitadalevuni SN, Kellokumpu V, Davis LS
2008 IEEE Conference on Computer Vision and Pattern Recognition. 2008 Jun;2008:1-8. doi: 10.1109/CVPR.2008.4587806

We present a Bayesian framework for action recognition through ballistic dynamics. Psycho-kinesiological studies indicate that ballistic movements form the natural units for human movement planning. The framework leads to an efficient and robust algorithm for temporally segmenting videos into atomic movements. Individual movements are annotated with person-centric morphological labels called ballistic verbs. This is tested on a dataset of interactive movements, achieving high recognition rates. The approach is also applied on a gesture recognition task, improving a previously reported recognition rate from 84% to 92%. Consideration of ballistic dynamics enhances the performance of the popular Motion History Image feature. We also illustrate the approach’s general utility on real-world videos. Experiments indicate that the method is robust to view, style and appearance variations.

View Publication Page
Eddy/Rivas Lab
05/30/08 | A probabilistic model of local sequence alignment that simplifies statistical significance estimation.
Sean R. Eddy
PLoS Computational Biology. 2008 May 30;4:e1000069. doi: 10.1371/journal.pcbi.1000069

Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (lambda) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty ("Forward" scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores ("Viterbi" scores) are Gumbel-distributed with constant lambda = log 2, and the high scoring tail of Forward scores is exponential with the same constant lambda. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments.

View Publication Page
05/01/08 | A cost-benefit analysis of neuronal morphology.
Wen Q, Chklovskii DB
Journal of Neurophysiology. 2008 May;99(5):2320-8. doi: 10.1371/journal.pcbi.1001066

Over hundreds of millions of years, evolution has optimized brain design to maximize its functionality while minimizing costs associated with building and maintenance. This observation suggests that one can use optimization theory to rationalize various features of brain design. Here, we attempt to explain the dimensions and branching structure of dendritic arbors by minimizing dendritic cost for given potential synaptic connectivity. Assuming only that dendritic cost increases with total dendritic length and path length from synapses to soma, we find that branching, planar, and compact dendritic arbors, such as those belonging to Purkinje cells in the cerebellum, are optimal. The theory predicts that adjacent Purkinje dendritic arbors should spatially segregate. In addition, we propose two explicit cost function expressions, falsifiable by measuring dendritic caliber near bifurcations.

View Publication Page