Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

1366 Janelia Publications

Showing 51-60 of 1366 results
03/22/18 | A Neural Circuit for the Suppression of Pain by a Competing Need State.
Alhadeff AL, Su Z, Hernandez E, Klima ML, Phillips SZ, Holland RA, Guo C, Hantman AW, De Jonghe BC, Betley JN
Cell. 2018 Mar 22;173(1):140-52. doi: 10.1016/j.cell.2018.02.057

Hunger and pain are two competing signals that individuals must resolve to ensure survival. However, the neural processes that prioritize conflicting survival needs are poorly understood. We discovered that hunger attenuates behavioral responses and affective properties of inflammatory pain without altering acute nociceptive responses. This effect is centrally controlled, as activity in hunger-sensitive agouti-related protein (AgRP)-expressing neurons abrogates inflammatory pain. Systematic analysis of AgRP projection subpopulations revealed that the neural processing of hunger and inflammatory pain converge in the hindbrain parabrachial nucleus (PBN). Strikingly, activity in AgRP → PBN neurons blocked the behavioral response to inflammatory pain as effectively as hunger or analgesics. The anti-nociceptive effect of hunger is mediated by neuropeptide Y (NPY) signaling in the PBN. By investigating the intersection between hunger and pain, we have identified a neural circuit that mediates competing survival needs and uncovered NPY Y1 receptor signaling in the PBN as a target for pain suppression.

View Publication Page
Spruston LabMenon Lab
03/22/18 | Continuous Variation within Cell Types of the Nervous System.
Cembrowski MS, Menon V
Trends in Neurosciences. 2018 Mar 22:. doi: 10.1016/j.tins.2018.02.010

The brain is an organ of immense complexity. Next-generation RNA sequencing (RNA-seq) is becoming increasingly popular in the deconstruction of this complexity into distinct classes of 'cell types'. Notably, in addition to revealing the organization of this distinct cell-type landscape, the technology has also begun to illustrate that continuous variation can be found within narrowly defined cell types. Here we summarize the evidence for graded transcriptomic heterogeneity being present, widespread, and functionally relevant in the nervous system. We explain how these graded differences can map onto higher-order organizational features and how they may reframe existing interpretations of higher-order heterogeneity. Ultimately, a multimodal approach incorporating continuously variable cell types will facilitate an accurate reductionist interpretation of the nervous system.

View Publication Page
03/16/18 | Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila.
Saumweber T, Rohwedder A, Schleyer M, Eichler K, Chen Y, Aso Y, Cardona A, Eschbach C, Kobler O, Voigt A, Durairaja A, Mancini N, Zlatic M, Truman JW, Thum AS, Gerber B
Nature Communications. 2018 Mar 16;9(1):1104. doi: 10.1038/s41467-018-03130-1

The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.

View Publication Page
03/14/18 | Fabricating optical-quality glass surfaces to study macrophage fusion.
Faust JJ, Christenson W, Doudrick K, Heddleston J, Chew T, Lampe M, Balabiyev A, Ros R, Ugarova TP
Journal of Visualized Experiments : JoVE. 2018 Mar 14(133):. doi: 10.3791/56866

Visualizing the formation of multinucleated giant cells (MGCs) from living specimens has been challenging due to the fact that most live imaging techniques require propagation of light through glass, but on glass macrophage fusion is a rare event. This protocol presents the fabrication of several optical-quality glass surfaces where adsorption of compounds containing long-chain hydrocarbons transforms glass into a fusogenic surface. First, preparation of clean glass surfaces as starting material for surface modification is described. Second, a method is provided for the adsorption of compounds containing long-chain hydrocarbons to convert non-fusogenic glass into a fusogenic substrate. Third, this protocol describes fabrication of surface micropatterns that promote a high degree of spatiotemporal control over MGC formation. Finally, fabricating glass bottom dishes is described. Examples of use of this in vitro cell system as a model to study macrophage fusion and MGC formation are shown.

View Publication Page
03/14/18 | Integrative structure and functional anatomy of a nuclear pore complex.
Kim SJ, Fernandez-Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, Herricks T, Slaughter BD, Hogan JA, Upla P, Chemmama IE, Pellarin R, Echeverria I, Shivaraju M, Chaudhury AS, Wang J, Williams R, Unruh JR, Greenberg CH, Jacobs EY, Yu Z, de la Cruz MJ, Mironska R, Stokes DL, Aitchison JD, Jarrold MF, Gerton JL, Ludtke SJ, Akey CW, Chait BT, Sali A, Rout MP
Nature. 2018 Mar 14:. doi: 10.1038/nature26003

Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

View Publication Page
03/13/18 | Comprehensive analysis of a cis-regulatory region reveals pleiotropy in enhancer function.
Preger-Ben Noon E, Sabarís G, Ortiz DM, Sager J, Liebowitz A, Stern DL, Frankel N
Cell Reports. 2018 Mar 13;22(11):3021-3031. doi: 10.1016/j.celrep.2018.02.073

Developmental genes can have complex cis-regulatory regions with multiple enhancers. Early work revealed remarkable modularity of enhancers, whereby distinct DNA regions drive gene expression in defined spatiotemporal domains. Nevertheless, a few reports have shown that enhancers function in multiple developmental stages, implying that enhancers can be pleiotropic. Here, we have studied the activity of the enhancers of the shavenbaby gene throughout D. melanogaster development. We found that all seven shavenbaby enhancers drive expression in multiple tissues and developmental stages. We explored how enhancer pleiotropy is encoded in two of these enhancers. In one enhancer, the same transcription factor binding sites contribute to embryonic and pupal expression, revealing site pleiotropy, whereas for a second enhancer, these roles are encoded by distinct sites. Enhancer pleiotropy may be a common feature of cis-regulatory regions of developmental genes, and site pleiotropy may constrain enhancer evolution in some cases.

View Publication Page
03/18/18 | Model-free quantification and visualization of colocalization in fluorescence images.
Taylor AB, Ioannou MS, Aaron J, Chew T
Cytometry. Part A : the journal of the International Society for Analytical Cytology. 2018 Mar 13:. doi: 10.1002/cyto.a.23356

The spatial association between fluorescently tagged biomolecules in situ provides valuable insight into their biological relationship. Within the limits of diffraction, such association can be measured using either Pearson's Correlation Coefficient (PCC) or Spearman's Rank Coefficient (SRC), which are designed to measure linear and monotonic correlations, respectively. However, the relationship between real biological signals is often more complex than these measures assume, rendering their results difficult to interpret. Here, we have adapted methods from the field of information theory to measure the association between two probes' concentrations based on their statistical dependence. Our approach is mathematically more general than PCC or SRC, making no assumptions about the type of relationship between the probes. We show that when applied to biological images, our measures provide more intuitive results that are also more robust to outliers and the presence of multiple relationships than PCC or SRC. We also devise a display technique to highlight regions in the input images where the probes' association is higher versus lower. We expect that our methods will allow biologists to more accurately and robustly quantify and visualize the association between two probes in a pair of fluorescence images. © 2018 International Society for Advancement of Cytometry.

View Publication Page
03/12/18 | Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2.
Guenther EL, Ge P, Trinh H, Sawaya MR, Cascio D, Boyer DR, Gonen T, Zhou ZH, Eisenberg DS
Nature Structural & Molecular Biology. 2018 Mar 12:. doi: 10.1038/s41594-018-0045-5

Proteins in the fibrous amyloid state are a major hallmark of neurodegenerative disease. Understanding the multiple conformations, or polymorphs, of amyloid proteins at the molecular level is a challenge of amyloid research. Here, we detail the wide range of polymorphs formed by a segment of human TAR DNA-binding protein 43 (TDP-43) as a model for the polymorphic capabilities of pathological amyloid aggregation. Using X-ray diffraction, microelectron diffraction (MicroED) and single-particle cryo-EM, we show that theDLIIKGISVHIsegment from the second RNA-recognition motif (RRM2) forms an array of amyloid polymorphs. These associations include seven distinct interfaces displaying five different symmetry classes of steric zippers. Additionally, we find that this segment can adopt three different backbone conformations that contribute to its polymorphic capabilities. The polymorphic nature of this segment illustrates at the molecular level how amyloid proteins can form diverse fibril structures.

View Publication Page
03/12/18 | Nociceptive interneurons control modular motor pathways to promote escape behavior in.
Burgos A, Honjo K, Ohyama T, Qian CS, Shin GJ, Gohl DM, Silies M, Tracey WD, Zlatic M, Cardona A, Grueber WB
eLife. 2018 Mar 12;7:. doi: 10.7554/eLife.26016

Rapid and efficient escape behaviors in response to noxious sensory stimuli are essential for protection and survival. Yet, how noxious stimuli are transformed to coordinated escape behaviors remains poorly understood. Inlarvae, noxious stimuli trigger sequential body bending and corkscrew-like rolling behavior. We identified a population of interneurons in the nerve cord of, termed Down-and-Back (DnB) neurons, that are activated by noxious heat, promote nociceptive behavior, and are required for robust escape responses to noxious stimuli. Electron microscopic circuit reconstruction shows that DnBs are targets of nociceptive and mechanosensory neurons, are directly presynaptic to pre-motor circuits, and link indirectly to Goro rolling command-like neurons. DnB activation promotes activity in Goro neurons, and coincident inactivation of Goro neurons prevents the rolling sequence but leaves intact body bending motor responses. Thus, activity from nociceptors to DnB interneurons coordinates modular elements of nociceptive escape behavior.

View Publication Page
03/09/18 | NeuroStorm: accelerating brain science discovery in the cloud.
Kiar G, Anderson RJ, Baden A, Badea A, Bridgeford EW, Champion A, Chandrashekar J, Collman F, Duderstadt B, Evans AC, Engert F, Falk B, Glatard T, Roncal WG, Kennedy DN, Maitlin-Shepard , Marren RA, Nnaemeka O, Perlman E, Seshamani S
arXiv. 2018 Mar 09:

Neuroscientists are now able to acquire data at staggering rates across spatiotemporal scales. However, our ability to capitalize on existing datasets, tools, and intellectual capacities is hampered by technical challenges. The key barriers to accelerating scientific discovery correspond to the FAIR data principles: findability, global access to data, software interoperability, and reproducibility/re-usability. We conducted a hackathon dedicated to making strides in those steps. This manuscript is a technical report summarizing these achievements, and we hope serves as an example of the effectiveness of focused, deliberate hackathons towards the advancement of our quickly-evolving field.

View Publication Page