Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

1764 Janelia Publications

Showing 51-60 of 1764 results
02/25/20 | High-throughput cellular-resolution synaptic connectivity mapping in vivo with concurrent two-photon optogenetics and volumetric Ca2+ imaging
McRaven C, Tanese D, Zhang L, Yang C, Ahrens MB, Emiliani V, Koyama M
bioRxiv. 2020 Feb 25:. doi:

The ability to measure synaptic connectivity and properties is essential for understanding neuronal circuits. However, existing methods that allow such measurements at cellular resolution are laborious and technically demanding. Here, we describe a system that allows such measurements in a high-throughput way by combining two-photon optogenetics and volumetric Ca2+ imaging with whole-cell recording. We reveal a circuit motif for generating fast undulatory locomotion in zebrafish.

View Publication Page
02/24/20 | Multiple network properties overcome random connectivity to enable stereotypic sensory responses.
Mittal AM, Gupta D, Singh A, Lin AC, Gupta N
Nature Communications. 2020 Feb 24;11(1):1023. doi: 10.1038/s41467-020-14836-6

Connections between neuronal populations may be genetically hardwired or random. In the insect olfactory system, projection neurons of the antennal lobe connect randomly to Kenyon cells of the mushroom body. Consequently, while the odor responses of the projection neurons are stereotyped across individuals, the responses of the Kenyon cells are variable. Surprisingly, downstream of Kenyon cells, mushroom body output neurons show stereotypy in their responses. We found that the stereotypy is enabled by the convergence of inputs from many Kenyon cells onto an output neuron, and does not require learning. The stereotypy emerges in the total response of the Kenyon cell population using multiple odor-specific features of the projection neuron responses, benefits from the nonlinearity in the transfer function, depends on the convergence:randomness ratio, and is constrained by sparseness. Together, our results reveal the fundamental mechanisms and constraints with which convergence enables stereotypy in sensory responses despite random connectivity.

View Publication Page
02/21/20 | The anatomy and physiology of claustrum-cortex interactions.
Jackson J, Smith JB, Lee AK
Annual Review of Neuroscience. 2020 Feb 21:. doi: 10.1146/annurev-neuro-092519-101637

The claustrum is one of the most widely connected regions of the forebrain, yet its function has remained obscure, largely due to the experimentally challenging nature of targeting this small, thin, and elongated brain area. However, recent advances in molecular techniques have enabled the anatomy and physiology of the claustrum to be studied with the spatiotemporal and cell type-specific precision required to eventually converge on what this area does. Here we review early anatomical and electrophysiological results from cats and primates, as well as recent work in the rodent, identifying the connectivity, cell types, and physiological circuit mechanisms underlying the communication between the claustrum and the cortex. The emerging picture is one in which the rodent claustrum is closely tied to frontal/limbic regions and plays a role in processes, such as attention, that are associated with these areas. Expected final online publication date for the , Volume 43 is July 8, 2020. Please see for revised estimates.

View Publication Page
02/19/20 | Input connectivity reveals additional heterogeneity of dopaminergic reinforcement in Drosophila
Otto N, Pleijzier MW, Morgan IC, Edmondson-Stait AJ, Heinz KJ, Stark I, Dempsey G, Ito M, Kapoor I, Hsu J, Schlegel PM, Bates AS, Costa M, Ito K, Bock DD, Rubin GM, Jefferis GS, Waddell S
bioRxiv. 2020 Feb 19:

Different types of Drosophila dopaminergic neurons (DANs) reinforce memories of unique valence and provide state-dependent motivational control [1]. Prior studies suggest that the compartment architecture of the mushroom body (MB) is the relevant resolution for distinct DAN functions [23]. Here we used a recent electron microscope volume of the fly brain [4] to reconstruct the fine anatomy of individual DANs within three MB compartments. We find the 20 DANs of the γ5 compartment, at least some of which provide reward teaching signals, can be clustered into 5 anatomical subtypes that innervate different regions within γ5. Reconstructing 821 upstream neurons reveals input selectivity, supporting the functional relevance of DAN sub-classification. Only one PAM-γ5 DAN subtype (γ5fb) receives direct recurrent input from γ5β’2a mushroom body output neurons (MBONs) and behavioral experiments distinguish a role for these DANs in memory revaluation from those reinforcing sugar memory. Other DAN subtypes receive major, and potentially reinforcing, inputs from putative gustatory interneurons or lateral horn neurons, which can also relay indirect feedback from the MB. We similarly reconstructed the single aversively reinforcing PPL1-γ1pedc DAN. The γ1pedc DAN inputs are mostly different to those of γ5 DANs and are clustered onto distinct branches of its dendritic tree, presumably separating its established roles in aversive reinforcement and appetitive motivation [56]. Additional tracing identified neurons that provide broad input to γ5, β’2a and γ1pedc DANs suggesting that distributed DAN populations can be coordinately regulated. These connectomic and behavioral analyses therefore reveal additional complexity of dopaminergic reinforcement circuits between and within MB compartments.

View Publication Page
02/18/20 | Transcriptional co-repressor Sin3a regulates hippocampal synaptic plasticity via Homer1/mGluR5.
Bridi MS, Schoch H, Florian C, Poplawski SG, Banerjee A, Hawk JD, Banks GS, Lejards C, Hahn C, Giese KP, Havekes R, Spruston N, Abel T
JCI Insight. 2020 Feb 18:. doi: 10.1172/jci.insight.92385

Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of two classes of regulatory complexes: permissive co-activators and silencing co-repressors. Much work has focused on co-activator complexes, but little is known about the co-repressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the co-repressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the post-synaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the mGluR1α- and mGluR5-dependence of long-term potentiation, and increases activation of extracellular signal regulated kinase (ERK) in the hippocampus after learning. Our studies define a critical role for co-repressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.

View Publication Page
02/17/20 | Behavioral features of motivated response to alcohol in Drosophila.
Catalano JL, Mei N, Azanchi R, Song S, Blackwater T, Heberlein U, Kaun KR
bioRxiv. 2020 Feb 17:

Animals avoid predators and find the best food and mates by learning from the consequences of their behavior. However, reinforcers are not always uniquely appetitive or aversive but can have complex properties. Most intoxicating substances fall within this category; provoking aversive sensory and physiological reactions while simultaneously inducing overwhelming appetitive properties. Here we describe the subtle behavioral features associated with continued seeking for alcohol despite aversive consequences. We developed an automated runway apparatus to measure how Drosophila respond to consecutive exposures of a volatilized substance. Behavior within this Behavioral Expression of Ethanol Reinforcement Runway (BEER Run) demonstrated a defined shift from aversive to appetitive responses to volatilized ethanol. Behavioral metrics attained by combining computer vision and machine learning methods, reveal that a subset of 9 classified behaviors and component behavioral features associate with this shift. We propose this combination of 9 be

View Publication Page
02/15/20 | Parvalbumin+ and Npas1+ Pallidal neurons have distinct circuit topology and function.
Pamukcu A, Cui Q, Xenias HS, Berceau BL, Augustine EC, Fan I, Hantman AW, Lerner TN, Boca SM, Chan CS
bioRxiv. 2020 Feb 15:
02/14/20 | Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila.
Masson J, Laurent F, Cardona A, Barre C, Skatchkovsky N, Zlatic M, Jovanic T
PLoS Genetics. 2020 Feb 14;16(2):e1008589. doi: 10.1371/journal.pgen.1008589

Nervous systems have the ability to select appropriate actions and action sequences in response to sensory cues. The circuit mechanisms by which nervous systems achieve choice, stability and transitions between behaviors are still incompletely understood. To identify neurons and brain areas involved in controlling these processes, we combined a large-scale neuronal inactivation screen with automated action detection in response to a mechanosensory cue in Drosophila larva. We analyzed behaviors from 2.9x105 larvae and identified 66 candidate lines for mechanosensory responses out of which 25 for competitive interactions between actions. We further characterize in detail the neurons in these lines and analyzed their connectivity using electron microscopy. We found the neurons in the mechanosensory network are located in different regions of the nervous system consistent with a distributed model of sensorimotor decision-making. These findings provide the basis for understanding how selection and transition between behaviors are controlled by the nervous system.

View Publication Page
02/14/20 | Multiplexed 3-photon microscopy for functional connectomics of mammalian brains.
Takasaki K, Tsyboulski DA, Waters J
Multiphoton Microscopy in the Biomedical Sciences XXMultiphoton Microscopy in the Biomedical Sciences XX. 2020 Feb 14:. doi: 10.1117/12.2543232

3-photon excitation enables in vivo fluorescence microscopy deep in densely labeled and highly scattering samples, while maintaining high resolution and contrast. We designed and characterized a dual-plane 3-photon microscope with temporal multiplexing and remote focusing, and performed simultaneous in vivo calcium imaging of two planes deep in the cortex of a transgenic mouse expressing GCaMP6s in nearly all excitatory neurons.

View Publication Page
02/13/20 | The Neuropixels probe: A CMOS based integrated microsystems platform for neuroscience and brain-computer interfaces.
Dutta B, Trautmann EM, Welkenhuysen M, Shenoy KV, Andrei A, Harris TD, Lopez CM, O'Callahan J, Putzeys J, Raducanu BC, Severi S, Stavisky SD
2019 IEEE International Electron Devices Meeting (IEDM). 2020 Feb 13:. doi: 10.1109/IEDM19573.201910.1109/IEDM19573.2019.8993611

We review recent progress in neural probes for brain recording, with a focus on the Neuropixels platform. Historically the number of neurons’ recorded simultaneously, follows a Moore’s law like behavior, with numbers doubling every 6.7 years. Using traditional techniques of probe fabrication, continuing to scale up electrode densities is very challenging. We describe a custom CMOS process technology that enables electrode counts well beyond 1000 electrodes; with the aim to characterize large neural populations with single neuron spatial precision and millisecond timing resolution. This required integrating analog and digital circuitry with the electrode array, making it a standalone integrated electrophysiology recording system. Input referred noise and power per channel is 7.5µV and <50µW respectively to ensure tissue heating <1°C. This approach enables doubling the number of measured neurons every 12 months.

View Publication Page