Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

1817 Janelia Publications

Showing 51-60 of 1817 results
07/10/20 | A general approach to engineer positive-going eFRET voltage indicators
Abdelfattah AS, Valenti R, Zheng J, Wong A, Podgorski K, Koyama M, Kim DS, Schreiter ER
Nature Communications. 2020 Jul 10;11(1):

We engineered electrochromic fluorescence resonance energy transfer (eFRET) genetically encoded voltage indicators (GEVIs) with “positive-going” fluorescence response to membrane depolarization through rational manipulation of the native proton transport pathway in microbial rhodopsins. We transformed the state-of-the-art eFRET GEVI Voltron into Positron, with kinetics and sensitivity equivalent to Voltron but flipped fluorescence signal polarity. We further applied this general approach to GEVIs containing different voltage sensitive rhodopsin domains and various fluorescent dye and fluorescent protein reporters.

View Publication Page
07/10/20 | Revisiting Membrane Microdomains and Phase Separation: A Viral Perspective
Sengupta P, Lippincott-Schwartz J
Viruses. 2020 Jul 10;12(7):745. doi: 10.3390/v12070745

Retroviruses selectively incorporate a specific subset of host cell proteins and lipids into their outer membrane when they bud out from the host plasma membrane. This specialized viral membrane composition is critical for both viral survivability and infectivity. Here, we review recent findings from live cell imaging of single virus assembly demonstrating that proteins and lipids sort into the HIV retroviral membrane by a mechanism of lipid-based phase partitioning. The findings showed that multimerizing HIV Gag at the assembly site creates a liquid-ordered lipid phase enriched in cholesterol and sphingolipids. Proteins with affinity for this specialized lipid environment partition into it, resulting in the selective incorporation of proteins into the nascent viral membrane. Building on this and other work in the field, we propose a model describing how HIV Gag induces phase separation of the viral assembly site through a mechanism involving transbilayer coupling of lipid acyl chains and membrane curvature changes. Similar phase-partitioning pathways in response to multimerizing structural proteins likely help sort proteins into the membranes of other budding structures within cells.

View Publication Page
07/08/20 | Basal ganglia circuits for action specification.
Park J, Coddington LT, Dudman JT
Annual Review Neuroscience. 2020 Jul 8;43:485-507. doi: 10.1146/annurev-neuro-070918-050452

Behavior is readily classified into patterns of movements with inferred common goals-actions. Goals may be discrete; movements are continuous. Through the careful study of isolated movements in laboratory settings, or via introspection, it has become clear that animals can exhibit exquisite graded specification to their movements. Moreover, graded control can be as fundamental to success as the selection of which action to perform under many naturalistic scenarios: a predator adjusting its speed to intercept moving prey, or a tool-user exerting the perfect amount of force to complete a delicate task. The basal ganglia are a collection of nuclei in vertebrates that extend from the forebrain (telencephalon) to the midbrain (mesencephalon), constituting a major descending extrapyramidal pathway for control over midbrain and brainstem premotor structures. Here we discuss how this pathway contributes to the continuous specification of movements that endows our voluntary actions with vigor and grace. Expected final online publication date for the , Volume 43 is July 8, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
07/08/20 | Bright and high-performance genetically encoded Ca indicator based on mNeonGreen fluorescent protein.
Zarowny L, Aggarwal A, Rutten VM, Kolb I, GENIE Project , Patel R, Huang H, Chang Y, Phan T, Kanyo R, Ahrens MB, Allison WT, Podgorski K, Campbell RE
ACS Sensors. 2020 Jul 08:. doi: 10.1021/acssensors.0c00279

Genetically encodable calcium ion (Ca) indicators (GECIs) based on green fluorescent proteins (GFP) are powerful tools for imaging of cell signaling and neural activity in model organisms. Following almost 2 decades of steady improvements in the GFP-based GCaMP series of GECIs, the performance of the most recent generation (i.e., jGCaMP7) may have reached its practical limit due to the inherent properties of GFP. In an effort to sustain the steady progression toward ever-improved GECIs, we undertook the development of a new GECI based on the bright monomeric GFP, mNeonGreen (mNG). The resulting indicator, mNG-GECO1, is 60% brighter than GCaMP6s in vitro and provides comparable performance as demonstrated by imaging Ca dynamics in cultured cells, primary neurons, and in vivo in larval zebrafish. These results suggest that mNG-GECO1 is a promising next-generation GECI that could inherit the mantle of GCaMP and allow the steady improvement of GECIs to continue for generations to come.

View Publication Page
07/08/20 | Mechanisms underlying the neural computation of head direction.
Hulse BK, Jayaraman V
Annual Review of Neuroscience. 2020 Jul 8;43:31-54. doi: 10.1146/annurev-neuro-072116-031516

Many animals use an internal sense of direction to guide their movements through the world. Neurons selective to head direction are thought to support this directional sense and have been found in a diverse range of species, from insects to primates, highlighting their evolutionary importance. Across species, most head-direction networks share four key properties: a unique representation of direction at all times, persistent activity in the absence of movement, integration of angular velocity to update the representation, and the use of directional cues to correct drift. The dynamics of theorized network structures called ring attractors elegantly account for these properties, but their relationship to brain circuits is unclear. Here, we review experiments in rodents and flies that offer insights into potential neural implementations of ring attractor networks. We suggest that a theory-guided search across model systems for biological mechanisms that enable such dynamics would uncover general principles underlying head-direction circuit function. Expected final online publication date for the , Volume 43 is July 8, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page
07/08/20 | The Drosophila mushroom body: From architecture to algorithm in a learning circuit.
Modi MN, Shuai Y, Turner GC
Annual Review of Neuroscience. 2020 Jul 08;43:465-484. doi: 10.1146/annurev-neuro-080317-0621333

The brain contains a relatively simple circuit for forming Pavlovian associations, yet it achieves many operations common across memory systems. Recent advances have established a clear framework for learning and revealed the following key operations: ) pattern separation, whereby dense combinatorial representations of odors are preprocessed to generate highly specific, nonoverlapping odor patterns used for learning; ) convergence, in which sensory information is funneled to a small set of output neurons that guide behavioral actions; ) plasticity, where changing the mapping of sensory input to behavioral output requires a strong reinforcement signal, which is also modulated by internal state and environmental context; and ) modularization, in which a memory consists of multiple parallel traces, which are distinct in stability and flexibility and exist in anatomically well-defined modules within the network. Cross-module interactions allow for higher-order effects where past experience influences future learning. Many of these operations have parallels with processes of memory formation and action selection in more complex brains.

View Publication Page
07/01/20 | Dielectric confinement and excitonic effects in two-dimensional nanoplatelets.
Ji B, Rabani E, Efros AL, Vaxenburg R, Ashkenazi O, Azulay D, Banin U, Millo O
ACS Nano. 2020 Jul 01:. doi: 10.1021/acsnano.0c01950

Quasi-two-dimensional (2D) semiconductor nanoplatelets manifest strong quantum confinement with exceptional optical characteristics of narrow photoluminescence peaks with energies tunable by thickness with monolayer precision. We employed scanning tunneling spectroscopy (STS) in conjunction with optical measurements to probe the thickness-dependent band gap and density of excited states in a series of CdSe nanoplatelets. The tunneling spectra, measured in the double-barrier tunnel junction configuration, reveal the effect of quantum confinement on the band gap taking place mainly through a blue-shift of the conduction band edge, along with a signature of 2D electronic structure intermixed with finite lateral-size and/or defects effects. The STS fundamental band gaps are larger than the optical gaps as expected from the contributions of exciton binding in the absorption, as confirmed by theoretical calculations. The calculations also point to strong valence band mixing between the light- and split-off hole levels. Strikingly, the energy difference between the heavy-hole and light-hole levels in the tunneling spectra are significantly larger than the corresponding values extracted from the absorption spectra. Possible explanations for this, including an interplay of nanoplatelet charging, dielectric confinement, and difference in exciton binding energy for light and heavy holes, are analyzed and discussed.

View Publication Page
07/01/20 | Membrane potential dynamics underlying context-dependent sensory responses in the hippocampus.
Zhao X, Wang Y, Spruston N, Magee JC
Nature Neuroscience. 2020 Jul 1;23(7):881-91. doi: 10.1038/s41593-020-0646-2

As animals navigate, they must identify features within context. In the mammalian brain, the hippocampus has the ability to separately encode different environmental contexts, even when they share some prominent features. To do so, neurons respond to sensory features in a context-dependent manner; however, it is not known how this encoding emerges. To examine this, we performed electrical recordings in the hippocampus as mice navigated in two distinct virtual environments. In CA1, both synaptic input to single neurons and population activity strongly tracked visual cues in one environment, whereas responses were almost completely absent when the same cue was presented in a second environment. A very similar, highly context-dependent pattern of cue-driven spiking was also observed in CA3. These results indicate that CA1 inherits a complex spatial code from upstream regions, including CA3, that have already computed a context-dependent representation of environmental features.

View Publication Page
07/01/20 | Preventing cytokine storm syndrome in COVID-19 using α-1 adrenergic receptor antagonists.
Konig MF, Powell M, Staedtke V, Bai R, Thomas DL, Fischer N, Huq S, Khalafallah AM, Koenecke A, Xiong R, Mensh B, Papadopoulos N, Kinzler KW, Vogelstein B, Vogelstein JT, Athey S, Zhou S, Bettegowda C
The Journal of Clinical Investigatio. 2020 Jul 01;130(7):3345-47. doi: 10.1172/JCI139642
07/01/20 | The anatomy and physiology of claustrum-cortex interactions.
Jackson J, Smith JB, Lee AK
Annual Review of Neuroscience. 2020 Jul 1;43:231-47. doi: 10.1146/annurev-neuro-092519-101637

The claustrum is one of the most widely connected regions of the forebrain, yet its function has remained obscure, largely due to the experimentally challenging nature of targeting this small, thin, and elongated brain area. However, recent advances in molecular techniques have enabled the anatomy and physiology of the claustrum to be studied with the spatiotemporal and cell type-specific precision required to eventually converge on what this area does. Here we review early anatomical and electrophysiological results from cats and primates, as well as recent work in the rodent, identifying the connectivity, cell types, and physiological circuit mechanisms underlying the communication between the claustrum and the cortex. The emerging picture is one in which the rodent claustrum is closely tied to frontal/limbic regions and plays a role in processes, such as attention, that are associated with these areas. Expected final online publication date for the , Volume 43 is July 8, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

View Publication Page