Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block

Tool Types

general_search_page-panel_pane_1 | views_panes

2041 Janelia Publications

Showing 61-70 of 2041 results
09/28/21 | A serotonergic axon-cilium synapse drives nuclear signaling to maintain chromatin accessibility
Shu-Hsien Sheu , Srigokul Upadhyayula , Vincent Dupuy , Song Pang , Andrew L. Lemire , Deepika Walpita , H. Amalia Pasolli , Fei Deng , Jinxia Wan , Lihua Wang , Justin Houser , Silvia Sanchez-Martinez , Sebastian E. Brauchi , Sambashiva Banala , Melanie Freeman , C. Shan Xu , Tom Kirchhausen , Harald F. Hess , Luke Lavis , Yu-Long Li , Séverine Chaumont-Dubel , David E. Clapham
bioRxiv. 2021 Sep 28:

Chemical synapses between axons and dendrites mediate much of the brain’s intercellular communication. Here we describe a new kind of synapse – the axo-ciliary synapse - between axons and primary cilia. By employing enhanced focused ion beam – scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between the serotonergic axons arising from the brainstem, and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, 5-hydroxytryptamine receptor 6 (HTR6), whose mutation is associated with learning and memory defects. Using a newly developed cilia-targeted serotonin sensor, we show that optogenetic stimulation of serotonergic axons results in serotonin release onto cilia. Ciliary HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway. Ablation of this pathway results in nuclear actin and chromatin accessibility changes in CA1 pyramidal neurons. Axo-ciliary synapses serve as a distinct mechanism for neuromodulators to program neuron transcription through privileged access to the nuclear compartment.

View Publication Page
09/27/21 | A dominant-negative SOX18 mutant disrupts multiple regulatory layers essential to transcription factor activity.
McCann AJ, Lou J, Moustaqil M, Graus MS, Blum A, Fontaine F, Liu H, Luu W, Rudolffi-Soto P, Koopman P, Sierecki E, Gambin Y, Meunier FA, Liu Z, Hinde E, Francois M
Nucleic Acids Research. 2021 Sep 27:. doi: 10.1093/nar/gkab820

Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of the SOX18 transcription factor (SOX18RaOp) responsible for both the classical mouse mutant Ragged Opossum and the human genetic disorder Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome. Combining three single-molecule imaging assays in living cells together with genomics and proteomics analysis, we found that SOX18RaOp disrupts the system through an accumulation of molecular interferences which impair several functional properties of the wild-type SOX18 protein, including its target gene selection process. The dominant-negative effect is further amplified by poisoning the interactome of its wild-type counterpart, which perturbs regulatory nodes such as SOX7 and MEF2C. Our findings explain in unprecedented detail the multi-layered process that underpins the molecular aetiology of dominant-negative transcription factor function.

View Publication Page
09/27/21 | A dominant-negative SOX18 mutant disrupts multiple regulatory layers essential to transcription factor activity.
McCann AJ, Lou J, Moustaqil M, Graus MS, Blum A, Fontaine F, Liu H, Luu W, Rudolffi-Soto P, Koopman P, Sierecki E, Gambin Y, Meunier FA, Liu Z, Hinde E, Francois M
Nucleic Acids Research. 2021 Sep 27:. doi: 10.1093/nar/gkab820

Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of the SOX18 transcription factor (SOX18RaOp) responsible for both the classical mouse mutant Ragged Opossum and the human genetic disorder Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome. Combining three single-molecule imaging assays in living cells together with genomics and proteomics analysis, we found that SOX18RaOp disrupts the system through an accumulation of molecular interferences which impair several functional properties of the wild-type SOX18 protein, including its target gene selection process. The dominant-negative effect is further amplified by poisoning the interactome of its wild-type counterpart, which perturbs regulatory nodes such as SOX7 and MEF2C. Our findings explain in unprecedented detail the multi-layered process that underpins the molecular aetiology of dominant-negative transcription factor function.

View Publication Page
09/25/21 | Coding sequence-independent homology search identifies highly divergent homopteran putative effector gene family
Stern D, Han C
bioRxiv. 2021 Sep 25:. doi: https://doi.org/10.1101/2021.09.24.461719

Many genomes contain rapidly evolving and highly divergent genes whose homology to genes of known function often cannot be determined from sequence similarity alone. However, coding sequence-independent features of genes, such as intron-exon boundaries, often evolve more slowly than coding sequences and can provide complementary evidence for homology. We found that a linear logistic regression classifier using only structural features of rapidly evolving bicycle aphid effector genes identified many putative bicycle homologs in aphids, phylloxerids, and scale insects, whereas sequence similarity search methods yielded few homologs in most aphids and no homologs in phylloxerids and scale insects. Subsequent examination of sequence features and intron locations supported homology assignments. Differential expression studies of newly-identified bicycle homologs, together with prior proteomic studies, support the hypothesis that BICYCLE proteins act as plant effector proteins in many aphid species and perhaps also in phylloxerids and scale insects.

View Publication Page
09/21/21 | Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome.
Govind AP, Jeyifous O, Russell TA, Yi Z, Weigel AV, Ramaprasad A, Newell L, Ramos W, Valbuena FM, Casler JC, Yan J, Glick BS, Swanson GT, Lippincott-Schwartz J, Green WN
eLife. 2021 Sep 21;10:. doi: 10.7554/eLife.68910

Activity-driven changes in the neuronal surface glycoproteome are known to occur with synapse formation, plasticity and related diseases, but their mechanistic basis and significance are unclear. Here, we observed that -glycans on surface glycoproteins of dendrites shift from immature to mature forms containing sialic acid in response to increased neuronal activation. In exploring the basis of these -glycosylation alterations, we discovered they result from the growth and proliferation of Golgi satellites scattered throughout the dendrite. Golgi satellites that formed during neuronal excitation were in close association with ER exit sites and early endosomes and contained glycosylation machinery without the Golgi structural protein, GM130. They functioned as distal glycosylation stations in dendrites, terminally modifying sugars either on newly synthesized glycoproteins passing through the secretory pathway, or on surface glycoproteins taken up from the endocytic pathway. These activities led to major changes in the dendritic surface of excited neurons, impacting binding and uptake of lectins, as well as causing functional changes in neurotransmitter receptors such as nicotinic acetylcholine receptors. Neural activity thus boosts the activity of the dendrite's satellite micro-secretory system by redistributing Golgi enzymes involved in glycan modifications into peripheral Golgi satellites. This remodeling of the neuronal surface has potential significance for synaptic plasticity, addiction and disease.

View Publication Page
09/07/21 | Dissociable contributions of phasic dopamine activity to reward and prediction.
Pan W, Coddington LT, Dudman JT
Cell Reports. 2021 Sep 07;36(10):109684. doi: 10.1016/j.celrep.2021.109684

Sensory cues that precede reward acquire predictive (expected value) and incentive (drive reward-seeking action) properties. Mesolimbic dopamine neurons' responses to sensory cues correlate with both expected value and reward-seeking action. This has led to the proposal that phasic dopamine responses may be sufficient to inform value-based decisions, elicit actions, and/or induce motivational states; however, causal tests are incomplete. Here, we show that direct dopamine neuron stimulation, both calibrated to physiological and greater intensities, at the time of reward can be sufficient to induce and maintain reward seeking (reinforcing) although replacement of a cue with stimulation is insufficient to induce reward seeking or act as an informative cue. Stimulation of descending cortical inputs, one synapse upstream, are sufficient for reinforcement and cues to future reward. Thus, physiological activation of mesolimbic dopamine neurons can be sufficient for reinforcing properties of reward without being sufficient for the predictive and incentive properties of cues.

View Publication Page
09/06/21 | Visualizing the Invisible: Advanced Optical Microscopy as a Tool to Measure Biomechanical Forces.
Hobson CM, Aaron JS, Heddleston JM, Chew T
Frontiers in Cell and Developmental Biology. 2021 Sep 06;9:706126. doi: 10.3389/fcell.2021.706126

The importance of mechanical force in biology is evident across diverse length scales, ranging from tissue morphogenesis during embryo development to mechanotransduction across single adhesion proteins at the cell surface. Consequently, many force measurement techniques rely on optical microscopy to measure forces being applied by cells on their environment, to visualize specimen deformations due to external forces, or even to directly apply a physical perturbation to the sample via photoablation or optogenetic tools. Recent developments in advanced microscopy offer improved approaches to enhance spatiotemporal resolution, imaging depth, and sample viability. These advances can be coupled with already existing force measurement methods to improve sensitivity, duration and speed, amongst other parameters. However, gaining access to advanced microscopy instrumentation and the expertise necessary to extract meaningful insights from these techniques is an unavoidable hurdle. In this Live Cell Imaging special issue Review, we survey common microscopy-based force measurement techniques and examine how they can be bolstered by emerging microscopy methods. We further explore challenges related to the accompanying data analysis in biomechanical studies and discuss the various resources available to tackle the global issue of technology dissemination, an important avenue for biologists to gain access to pre-commercial instruments that can be leveraged for biomechanical studies.

View Publication Page
09/03/21 | Deep learning enables fast and dense single-molecule localization with high accuracy
Speiser A, Müller L, Matti U, Obara CJ, Legant WR, Kreshuk A, Macke JH, Ries J, Turaga SC
Nature Methods. 2021 Sep 03;18(9):. doi: 10.1101/2020.10.26.355164

Single-molecule localization microscopy (SMLM) has had remarkable success in imaging cellular structures with nanometer resolution, but the need for activating only single isolated emitters limits imaging speed and labeling density. Here, we overcome this major limitation using deep learning. We developed DECODE, a computational tool that can localize single emitters at high density in 3D with highest accuracy for a large range of imaging modalities and conditions. In a public software benchmark competition, it outperformed all other fitters on 12 out of 12 data-sets when comparing both detection accuracy and localization error, often by a substantial margin. DECODE allowed us to take live-cell SMLM data with reduced light exposure in just 3 seconds and to image microtubules at ultra-high labeling density. Packaged for simple installation and use, DECODE will enable many labs to reduce imaging times and increase localization density in SMLM.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
09/02/21 | A framework for studying behavioral evolution by reconstructing ancestral repertoires.
Hernández DG, Rivera C, Cande J, Zhou B, Stern D, Berman GJ
eLife. 2021 Sep 02;10:. doi: 10.7554/eLife.61806

Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra- and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual's behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.

View Publication Page
09/02/21 | Classification and genetic targeting of cell types in the primary taste and premotor center of the adult brain.
Sterne GR, Otsuna H, Dickson BJ, Scott K
eLife. 2021 Sep 02;10:. doi: 10.7554/eLife.71679

Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult , comprising approximately one third of all SEZ neurons. We characterize the single cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.

View Publication Page