Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2333 Janelia Publications

Showing 61-70 of 2333 results
06/01/23 | BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets.
Manubens-Gil L, Zhou Z, Chen H, Ramanathan A, Liu X, Liu Y, Bria A, Gillette T, Ruan Z, Yang J, Radojević M, Zhao T, Cheng L, Qu L, Liu S, Bouchard KE, Gu L, Cai W, Ji S, Roysam B, Wang C, Yu H, Sironi A, Iascone DM, Zhou J, Bas E, Conde-Sousa E, Aguiar P, Li X, Li Y, Nanda S, Wang Y, Muresan L, Fua P, Ye B, He H, Staiger JF, Peter M, Cox DN, Simonneau M, Oberlaender M, Jefferis G, Ito K, Gonzalez-Bellido P, Kim J, Rubel E, Cline HT, Zeng H, Nern A, Chiang A, Yao J, Roskams J, Livesey R, Stevens J, Liu T, Dang C, Guo Y, Zhong N, Tourassi G, Hill S, Hawrylycz M, Koch C, Meijering E, Ascoli GA, Peng H
Nature Methods. 2023 Jun 01;20(6):. doi: 10.1038/s41592-023-01848-5

BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms. The goal of generating such a hand-curated diverse dataset is to advance the development of tracing algorithms and enable generalizable benchmarking. Together with image quality features, we pooled the data in an interactive web application that enables users and developers to perform principal component analysis, t-distributed stochastic neighbor embedding, correlation and clustering, visualization of imaging and tracing data, and benchmarking of automatic tracing algorithms in user-defined data subsets. The image quality metrics explain most of the variance in the data, followed by neuromorphological features related to neuron size. We observed that diverse algorithms can provide complementary information to obtain accurate results and developed a method to iteratively combine methods and generate consensus reconstructions. The consensus trees obtained provide estimates of the neuron structure ground truth that typically outperform single algorithms in noisy datasets. However, specific algorithms may outperform the consensus tree strategy in specific imaging conditions. Finally, to aid users in predicting the most accurate automatic tracing results without manual annotations for comparison, we used support vector machine regression to predict reconstruction quality given an image volume and a set of automatic tracings.

View Publication Page
06/01/23 | Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission.
Aggarwal A, Liu R, Chen Y, Ralowicz AJ, Bergerson SJ, Tomaska F, Mohar B, Hanson TL, Hasseman JP, Reep D, Tsegaye G, Yao P, Ji X, Kloos M, Walpita D, Patel R, Mohr MA, Tillberg PW, GENIE Project Team , Looger LL, Marvin JS, Hoppa MB, Konnerth A, Kleinfeld D, Schreiter ER, Podgorski K
Nature Methods. 2023 Jun 01;20(6):. doi: 10.1038/s41592-023-01863-6

The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.

View Publication Page
06/01/23 | Rejuvenating old fluorophores with new chemistry.
Schnermann MJ, Lavis LD
Current Opinions in Chemical Biology. 2023 Jun 01;75:102335. doi: 10.1016/j.cbpa.2023.102335

The field of organic chemistry began with 19th century scientists identifying and then expanding upon synthetic dye molecules for textiles. In the 20th century, dye chemistry continued with the aim of developing photographic sensitizers and laser dyes. Now, in the 21st century, the rapid evolution of biological imaging techniques provides a new driving force for dye chemistry. Of the extant collection of synthetic fluorescent dyes for biological imaging, two classes reign supreme: rhodamines and cyanines. Here, we provide an overview of recent examples where modern chemistry is used to build these old-but-venerable classes of optically responsive molecules. These new synthetic methods access new fluorophores, which then enable sophisticated imaging experiments leading to new biological insights.

View Publication Page
06/01/23 | Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster
Erica Ehrhardt , Samuel C Whitehead , Shigehiro Namiki , Ryo Minegishi , Igor Siwanowicz , Kai Feng , Hideo Otsuna , FlyLight Project Team , Geoffrey W Meissner , David Stern , Jim Truman , David Shepherd , Michael H. Dickinson , Kei Ito , Barry J Dickson , Itai Cohen , Gwyneth M Card , Wyatt Korff
bioRxiv. 2023 Jun 01:. doi: 10.1101/2023.05.31.542897

To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their function. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse driver lines targeting 198 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neural circuits and connectivity of premotor circuits while linking them to behavioral outputs.

View Publication Page
06/01/23 | Structural Diversity within the Endoplasmic Reticulum-From the Microscale to the Nanoscale.
Obara CJ, Moore AS, Lippincott-Schwartz J
Cold Spring Harbor Perspectives in Biology. 2023 Jun 01;15(6):. doi: 10.1101/cshperspect.a041259

The endoplasmic reticulum (ER) is a continuous, highly dynamic membrane compartment that is crucial for numerous basic cellular functions. The ER stretches from the nuclear envelope to the outer periphery of all living eukaryotic cells. This ubiquitous organelle shows remarkable structural complexity, adopting a range of shapes, curvatures, and length scales. Canonically, the ER is thought to be composed of two simple membrane elements: sheets and tubules. However, recent advances in superresolution light microscopy and three-dimensional electron microscopy have revealed an astounding diversity of nanoscale ER structures, greatly expanding our view of ER organization. In this review, we describe these diverse ER structures, focusing on what is known of their regulation and associated functions in mammalian cells.

View Publication Page
05/31/23 | Comparative connectomics and escape behavior in larvae of closely related Drosophila species.
Zhu J, Boivin J, Pang S, Xu CS, Lu Z, Saalfeld S, Hess HF, Ohyama T
Current Biology. 2023 May 31:. doi: 10.1016/j.cub.2023.05.043

Evolution has generated an enormous variety of morphological, physiological, and behavioral traits in animals. How do behaviors evolve in different directions in species equipped with similar neurons and molecular components? Here we adopted a comparative approach to investigate the similarities and differences of escape behaviors in response to noxious stimuli and their underlying neural circuits between closely related drosophilid species. Drosophilids show a wide range of escape behaviors in response to noxious cues, including escape crawling, stopping, head casting, and rolling. Here we find that D. santomea, compared with its close relative D. melanogaster, shows a higher probability of rolling in response to noxious stimulation. To assess whether this behavioral difference could be attributed to differences in neural circuitry, we generated focused ion beam-scanning electron microscope volumes of the ventral nerve cord of D. santomea to reconstruct the downstream partners of mdIV, a nociceptive sensory neuron in D. melanogaster. Along with partner interneurons of mdVI (including Basin-2, a multisensory integration neuron necessary for rolling) previously identified in D. melanogaster, we identified two additional partners of mdVI in D. santomea. Finally, we showed that joint activation of one of the partners (Basin-1) and a common partner (Basin-2) in D. melanogaster increased rolling probability, suggesting that the high rolling probability in D. santomea is mediated by the additional activation of Basin-1 by mdIV. These results provide a plausible mechanistic explanation for how closely related species exhibit quantitative differences in the likelihood of expressing the same behavior.

View Publication Page
05/30/23 | Mechanisms of memory storage and retrieval in hippocampal area CA3
Yiding Li , John J. Briguglio , Sandro Romani , Jeffrey C. Magee
bioRxiv. 2023 May 30:. doi: 10.1101/2023.05.30.542781

Hippocampal area CA3 is thought to play a central role in memory formation and retrieval. Although various network mechanisms have been hypothesized to mediate these computations, direct evidence is lacking. Using intracellular membrane potential recordings from CA3 neurons and optogenetic manipulations in behaving mice we found that place field activity is produced by a symmetric form of Behavioral Timescale Synaptic Plasticity (BTSP) at recurrent synaptic connections among CA3 principal neurons but not at synapses from the dentate gyrus (DG). Additional manipulations revealed that excitatory input from the entorhinal cortex (EC) but not DG was required to update place cell activity based on the animal’s movement. These data were captured by a computational model that used BTSP and an external updating input to produce attractor dynamics under online learning conditions. Additional theoretical results demonstrate the enhanced memory storage capacity of such networks, particularly in the face of correlated input patterns. The evidence sheds light on the cellular and circuit mechanisms of learning and memory formation in the hippocampus.

View Publication Page
05/29/23 | Mapping memories: pulse-chase labeling reveals AMPA receptor dynamics during memory formation.
Doyeon Kim , Pojeong Park , Xiuyuan Li , J. David Wong Campos , He Tian , Eric M. Moult , Jonathan B. Grimm , Luke Lavis , Adam E. Cohen
bioRxiv. 2023 May 29:. doi: 10.1101/2023.05.26.541296

A tool to map changes in synaptic strength during a defined time window could provide powerful insights into the mechanisms governing learning and memory. We developed a technique, Extracellular Protein Surface Labeling in Neurons (EPSILON), to map α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) insertion in vivo by pulse-chase labeling of surface AMPARs with membrane-impermeable dyes. This approach allows for single-synapse resolution maps of plasticity in genetically targeted neurons during memory formation. We investigated the relationship between synapse-level and cell-level memory encodings by mapping synaptic plasticity and cFos expression in hippocampal CA1 pyramidal cells upon contextual fear conditioning (CFC). We observed a strong correlation between synaptic plasticity and cFos expression, suggesting a synaptic mechanism for the association of cFos expression with memory engrams. The EPSILON technique is a useful tool for mapping synaptic plasticity and may be extended to investigate trafficking of other transmembrane proteins.

View Publication Page
05/29/23 | Tissue-specific transcriptome analyses in Drosophila provide novel insights into the mode of action of the insecticide spinosad and the function of its target, nAChRα6.
Martelli F, Ravenscroft TA, Hutchison W, Batterham P
Pest Management Science. 2023 May 29:. doi: 10.1002/ps.7585

BACKGROUND: The insecticides spinosad and imidacloprid are neurotoxins with distinct modes of action. Both target nicotinic acetylcholine receptors (nAChRs), albeit different subunits. Spinosad is an allosteric modulator, that upon binding initiates endocytosis of its target, nAChRα6. Imidacloprid binding triggers excessive neuronal ion influx. Despite these differences, low-dose effects converge downstream in the precipitation of oxidative stress and neurodegeneration.

RESULTS: Using RNA-Seq, we compared the transcriptional signatures of spinosad and imidacloprid, at low-dose exposures. Both insecticides cause upregulation of Glutathione S-transferase and Cytochrome P450 genes in the brain and downregulation in the fat body, whereas reduced expression of immune-related genes is observed in both tissues. Spinosad shows unique impacts on genes involved in lysosomal function, protein folding, and reproduction. Co-expression analyses revealed little to no correlation between genes affected by spinosad and nAChRα6 expressing neurons, but a positive correlation with glial cell markers. We also detected and experimentally confirmed nAChRα6 expression in fat body cells and male germline cells. This led us to uncover lysosomal dysfunction in the fat body following spinosad exposure, and a fitness cost in spinosad-resistant (nAChRα6 null) males - oxidative stress in testes, and reduced fertility.

CONCLUSION: Spinosad and imidacloprid share transcriptional perturbations in immunity-, energy homeostasis-, and oxidative stress-related genes. Low doses of other neurotoxic insecticides should be investigated for similar impacts. While target-site spinosad resistance mutation has evolved in the field, this may have a fitness cost. Our findings demonstrate the power of tissue-specific transcriptomics approach and the use of single-cell transcriptome data. This article is protected by copyright. All rights reserved.

View Publication Page
05/26/23 | Voltage dynamics of dendritic integration and back-propagation in vivo
J. David Wong-Campos , Pojeong Park , Hunter Davis , Yitong Qi , He Tian , Daniel G. Itkis , Doyeon Kim , Sarah E. Plutkis , Luke Lavis , Adam E. Cohen
bioRxiv. 2023 May 26:. doi: 10.1101/2023.05.25.542363

Neurons integrate synaptic inputs within their dendrites and produce spiking outputs, which then propagate down the axon and back into the dendrites where they contribute to plasticity. Mapping the voltage dynamics in dendritic arbors of live animals is crucial for understanding neuronal computation and plasticity rules. Here we combine patterned channelrhodopsin activation with dual-plane structured illumination voltage imaging, for simultaneous perturbation and monitoring of dendritic and somatic voltage in Layer 2/3 pyramidal neurons in anesthetized and awake mice. We examined the integration of synaptic inputs and compared the dynamics of optogenetically evoked, spontaneous, and sensory-evoked back-propagating action potentials (bAPs). Our measurements revealed a broadly shared membrane voltage throughout the dendritic arbor, and few signatures of electrical compartmentalization among synaptic inputs. However, we observed spike rate acceleration-dependent propagation of bAPs into distal dendrites. We propose that this dendritic filtering of bAPs may play a critical role in activity-dependent plasticity.

View Publication Page