Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-BfUTt7484DSUmejmGh6NWRUlV0BgbVWM | block
facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-aK0bSsPXQOqhYQEgonL2xGNrv4SPvFLb | block
general_search_page-panel_pane_1 | views_panes

4952 Results

Showing 1-10 of 4952 results
Publications
07/01/25 | (Invited) Nanoscale Insights into Dopamine Release: Single-Strand DNA Functionalized SWCNTs in Neuroscience
Beyene AG
ECS Meeting Abstracts. 2025 July 01;MA2025-01:933. doi: 10.1149/MA2025-0111933mtgabs

Single-stranded DNA (ssDNA)-functionalized single-wall carbon nanotubes (SWCNTs) exhibit exceptional optical sensitivity to catecholamines, including dopamine and norepinephrine—key signaling molecules that play vital roles in brain function. This unique capability positions SWCNTs as powerful tools for advancing our understanding of neurochemical processes involving dopaminergic and noradrenergic neurons. In this presentation, I will highlight how our lab has leveraged SWCNT nanosensors to push the boundaries of dopamine neuroscience. For studies in cultured neurons, we developed a composite nanofilm strategy that enabled us to visualize dopamine release with exceptional resolution, capturing single bouton activity with quantal sensitivity while monitoring thousands of release sites simultaneously in large imaging fields of view. By combining SWCNT-based activity imaging with immunofluorescence, electron microscopy, and cutting-edge molecular, cellular and genetic techniques, we have gained new insights into neurobiological properties of dopamine release sites in dopaminergic neurons that had heretofore been inaccessible with conventional methods of inquiry. Building on these advances, I will discuss recent progress in the development of in vivo-compatible dopamine nanosensors. These innovations have allowed us to monitor dopamine dynamics in awake and behaving mice, bridging the gap between molecular-scale imaging and real-time behavior analysis. Furthermore, I will discuss methodological developments that enabled the deployment of these nanosensors in vivo. Looking ahead, these SWCNT-enabled technological advancements hold potential for the study of neurochemical signaling, offering deeper insights into both normal brain function and the pathophysiology of disorders involving catecholamines. Future work aims to expand the applications of these nanosensors to other neural circuits and neuromodulators, ultimately advancing our ability to decode the brain’s chemical language.

View Publication Page
Publications
06/15/22 | 2,7-Diaminobenzopyrylium Dyes Are Live-Cell Mitochondrial Stains2,7-Diaminobenzopyrylium Dyes Are Live-Cell Mitochondrial Stains
Banala S, Tkachuk AN, Patel R, Kumar P, Brown TA, Lavis LD
ACS Bio & Med Chem Au. 2022 Jun 15;2(3):307-12. doi: 10.1021/acsbiomedchemau.1c00068

Small-molecule fluorescent stains enable the imaging of cellular structures without the need for genetic manipulation. Here, we introduce 2,7-diaminobenzopyrylium (DAB) dyes as live-cell mitochondrial stains excited with violet light. This amalgam of the coumarin and rhodamine fluorophore structures yields dyes with high photostability and tunable spectral properties.

View Publication Page
Conference Listing
Conference Listing
Conference Listing
Conference Listing