Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Ahrens Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block

Associated Project Team

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3 Publications

Showing 1-3 of 3 results
Your Criteria:
    11/27/21 | A brainstem integrator for self-localization and positional homeostasis
    Yang E, Zwart MF, Rubinov M, James B, Wei Z, Narayan S, Vladimirov N, Mensh BD, Fitzgerald JE, Ahrens MB
    bioRxiv. 2021 Nov 27:. doi: 10.1101/2021.11.26.468907

    To accurately track self-location, animals need to integrate their movements through space. In amniotes, representations of self-location have been found in regions such as the hippocampus. It is unknown whether more ancient brain regions contain such representations and by which pathways they may drive locomotion. Fish displaced by water currents must prevent uncontrolled drift to potentially dangerous areas. We found that larval zebrafish track such movements and can later swim back to their earlier location. Whole-brain functional imaging revealed the circuit enabling this process of positional homeostasis. Position-encoding brainstem neurons integrate optic flow, then bias future swimming to correct for past displacements by modulating inferior olive and cerebellar activity. Manipulation of position-encoding or olivary neurons abolished positional homeostasis or evoked behavior as if animals had experienced positional shifts. These results reveal a multiregional hindbrain circuit in vertebrates for optic flow integration, memory of self-location, and its neural pathway to behavior.Competing Interest StatementThe authors have declared no competing interest.

    View Publication Page
    10/06/21 | Cre-Dependent Anterograde Transsynaptic Labeling and Functional Imaging in Zebrafish Using VSV With Reduced Cytotoxicity.
    Kler S, Ma M, Narayan S, Ahrens MB, Pan YA
    Frontiers in Neuroanatomy. 2021 Oct 06;15:758350. doi: 10.3389/fnana.2021.758350

    The small size and translucency of larval zebrafish () have made it a unique experimental system to investigate whole-brain neural circuit structure and function. Still, the connectivity patterns between most neuronal types remain mostly unknown. This gap in knowledge underscores the critical need for effective neural circuit mapping tools, especially ones that can integrate structural and functional analyses. To address this, we previously developed a vesicular stomatitis virus (VSV) based approach called Tracer with Restricted Anterograde Spread (TRAS). TRAS utilizes lentivirus to complement replication-incompetent VSV (VSVΔG) to allow restricted (monosynaptic) anterograde labeling from projection neurons to their target cells in the brain. Here, we report the second generation of TRAS (TRAS-M51R), which utilizes a mutant variant of VSVΔG [VSV(M51R)ΔG] with reduced cytotoxicity. Within the primary visual pathway, we found that TRAS-M51R significantly improved long-term viability of transsynaptic labeling (compared to TRAS) while maintaining anterograde spread activity. By using Cre-expressing VSV(M51R)ΔG, TRAS-M51R could selectively label excitatory ( positive) and inhibitory ( positive) retinorecipient neurons. We further show that these labeled excitatory and inhibitory retinorecipient neurons retained neuronal excitability upon visual stimulation at 5-8 days post fertilization (2-5 days post-infection). Together, these findings show that TRAS-M51R is suitable for neural circuit studies that integrate structural connectivity, cell-type identity, and neurophysiology.

    View Publication Page
    04/21/21 | Programmable 3D snapshot microscopy with Fourier convolutional networks
    Deb D, Jiao Z, Chen AB, Broxton M, Ahrens MB, Podgorski K, Turaga SC

    3D snapshot microscopy enables fast volumetric imaging by capturing a 3D volume in a single 2D camera image and performing computational reconstruction. Fast volumetric imaging has a variety of biological applications such as whole brain imaging of rapid neural activity in larval zebrafish. The optimal microscope design for this optical 3D-to-2D encoding is both sample- and task-dependent, with no general solution known. Deep learning based decoders can be combined with a differentiable simulation of an optical encoder for end-to-end optimization of both the deep learning decoder and optical encoder. This technique has been used to engineer local optical encoders for other problems such as depth estimation, 3D particle localization, and lensless photography. However, 3D snapshot microscopy is known to require a highly non-local optical encoder which existing UNet-based decoders are not able to engineer. We show that a neural network architecture based on global kernel Fourier convolutional neural networks can efficiently decode information from multiple depths in a volume, globally encoded across a 3D snapshot image. We show in simulation that our proposed networks succeed in engineering and reconstructing optical encoders for 3D snapshot microscopy where the existing state-of-the-art UNet architecture fails. We also show that our networks outperform the state-of-the-art learned reconstruction algorithms for a computational photography dataset collected on a prototype lensless camera which also uses a highly non-local optical encoding.

    View Publication Page