Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Ahrens Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

64 Publications

Showing 1-10 of 64 results
Your Criteria:
    06/15/25 | A connectomic resource for neural cataloguing and circuit dissection of the larval zebrafish brain
    Petkova MD, Januszewski M, Blakely T, Herrera KJ, Schuhknecht GF, Tiller R, Choi J, Schalek RL, Boulanger-Weill J, Peleg A, Wu Y, Wang S, Troidl J, Kumar Vohra S, Wei D, Lin Z, Bahl A, Tapia JC, Iyer N, Miller ZT, Hebert KB, Pavarino EC, Taylor M, Deng Z, Stingl M, Hockling D, Hebling A, Wang RC, Zhang LL, Dvorak S, Faik Z, King KI, Goel P, Wagner-Carena J, Aley D, Chalyshkan S, Contreas D, Li X, Muthukumar AV, Vernaglia MS, Carrasco TT, Melnychuck S, Yan T, Dalal A, DiMartino JM, Brown S, Safo-Mensa N, Greenberg E, Cook M, Finley-May S, Flynn MA, Hopkins GP, Kovalyak J, Leonard M, Lohff A, Ordish C, Scott AL, Takemura S, Walsh C, Walsh JJ, Berger DR, Pfister H, Berg S, Knecht C, Meissner GW, Korff W, Ahrens MB, Jain V, Lichtman JW, Engert F
    bioRxiv. 2025 Jun 16:. doi: 10.1101/2025.06.10.658982

    We present a correlated light and electron microscopy (CLEM) dataset from a 7-day-old larval zebrafish, integrating confocal imaging of genetically labeled excitatory (vglut2a) and inhibitory (gad1b) neurons with nanometer-resolution serial section EM. The dataset spans the brain and anterior spinal cord, capturing >180,000 segmented soma, >40,000 molecularly annotated neurons, and 30 million synapses, most of which were classified as excitatory, inhibitory, or modulatory. To characterize the directional flow of activity across the brain, we leverage the synaptic and cell body annotations to compute region-wise input and output drive indices at single cell resolution. We illustrate the dataset’s utility by dissecting and validating circuits in three distinct systems: water flow direction encoding in the lateral line, recurrent excitation and contralateral inhibition in a hindbrain motion integrator, and functionally relevant targeted long-range projections from a tegmental excitatory nucleus, demonstrating that this resource enables rigorous hypothesis testing as well as exploratory-driven circuit analysis. The dataset is integrated into an open-access platform optimized to facilitate community reconstruction and discovery efforts throughout the larval zebrafish brain.

     

    Preprint: https://www.biorxiv.org/content/early/2025/06/15/2025.06.10.658982

    View Publication Page
    06/06/25 | Voltage imaging reveals circuit computations in the raphe underlying serotonin-mediated motor vigor learning
    Kawashima T, Wei Z, Haruvi R, Shainer I, Narayan S, Baier H, Ahrens MB
    Neuron. 2025 Jun 06:. doi: 10.1016/j.neuron.2025.05.017

    As animals adapt to new situations, neuromodulation is a potent way to alter behavior, yet mechanisms by which neuromodulatory nuclei compute during behavior are underexplored. The serotonergic raphe supports motor learning in larval zebrafish by visually detecting distance traveled during swims, encoding action effectiveness, and modulating motor vigor. We found that swimming opens a gate for visual input to cause spiking in serotonergic neurons, enabling encoding of action outcomes and filtering out learning-irrelevant visual signals. Using light-sheet microscopy, voltage sensors, and neurotransmitter/modulator sensors, we tracked millisecond-timescale neuronal input-output computations during behavior. Swim commands initially inhibited serotonergic neurons via GABA, closing the gate to spiking. Immediately after, the gate briefly opened: voltage increased consistent with post-inhibitory rebound, allowing swim-induced visual motion to evoke firing through glutamate, triggering serotonin secretion and modulating motor vigor. Ablating GABAergic neurons impaired raphe coding and motor learning. Thus, serotonergic neuromodulation arises from action-outcome coincidence detection within the raphe, suggesting the existence of similarly fast and precise circuit computations across neuromodulatory nuclei.

     

    Preprint: https://doi.org/10.1101/2024.09.15.613083

    View Publication Page
    05/15/25 | Norepinephrine changes behavioral state via astroglial purinergic signaling
    Chen AB, Duque M, Wang VM, Dhanasekar M, Mi X, Rymbek A, Tocquer L, Narayan S, Prober D, Yu G, Wyart C, Engert F, Ahrens MB
    Science. 2025 May 15:. doi: 10.1126/science.adq5233

    Both neurons and glia communicate through diffusible neuromodulators; however, how neuron-glial interactions in such neuromodulatory networks influence circuit computation and behavior is unclear. During futility-induced behavioral transitions in the larval zebrafish, the neuromodulator norepinephrine (NE) drives fast excitation and delayed inhibition of behavior and circuit activity. We found that astroglial purinergic signaling implements the inhibitory arm of this motif. In larval zebrafish, NE triggers astroglial release of adenosine triphosphate (ATP), extracellular conversion of ATP into adenosine, and behavioral suppression through activation of hindbrain neuronal adenosine receptors. Our results suggest a computational and behavioral role for an evolutionarily conserved astroglial purinergic signaling axis in NE-mediated behavioral and brain state transitions and position astroglia as important effectors in neuromodulatory signaling.

     

    Preprint: https://www.biorxiv.org/content/early/2024/05/23/2024.05.23.595576

    View Publication Page
    04/04/25 | Fast, accurate, and versatile data analysis platform for the quantification of molecular spatiotemporal signals.
    Mi X, Chen AB, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim J, Ruetten VM, Wang Y, Wang M, Zhang W, Zheng W, Reitman ME, Huang Y, Wang X, Li L, Deng H, Shi S, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G
    Cell. 2025 Apr 04:. doi: 10.1016/j.cell.2025.03.012

    Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce activity quantification and analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine-learning techniques. It decomposes complex live-imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, microscopy techniques, and imaging approaches. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, as well as distinct sensorimotor signal propagation patterns in the mouse spinal cord.

    Preprint: https://doi.org/10.1101/2024.05.02.592259

    View Publication Page
    03/30/25 | Whole-brain, all-optical interrogation of neuronal dynamics underlying gut interoception in zebrafish
    Chen W, James B, Ruetten VM, Banala S, Wei Z, Fleishman G, Rubinov M, Fishman MC, Engert F, Lavis LD, Fitzgerald JE, Ahrens MB
    bioRxiv. 2025 Mar 30:. doi: 10.1101/2025.03.26.645305

    Internal signals from the body and external signals from the environment are processed by brain-wide circuits to guide behavior. However, the complete brain-wide circuit activity underlying interoception—the perception of bodily signals—and its interactions with sensorimotor circuits remain unclear due to technical barriers to accessing whole-brain activity at the cellular level during organ physiology perturbations. We developed an all-optical system for whole-brain neuronal imaging in behaving larval zebrafish during optical uncaging of gut-targeted nutrients and visuo-motor stimulation. Widespread neural activity throughout the brain encoded nutrient delivery, unfolding on multiple timescales across many specific peripheral and central regions. Evoked activity depended on delivery location and occurred with amino acids and D-glucose, but not L-glucose. Many gut-sensitive neurons also responded to swimming and visual stimuli, with brainstem areas primarily integrating gut and motor signals and midbrain regions integrating gut and visual signals. This platform links body-brain communication studies to brain-wide neural computation in awake, behaving vertebrates.

    View Publication Page
    02/06/25 | Live imaging of the extracellular matrix with a glycan-binding fluorophore.
    Fiore A, Yu G, Northey JJ, Patel R, Ravenscroft TA, Ikegami R, Kolkman W, Pratik Kumar , Dilan TL, Ruetten VM, Ahrens MB, Shroff H, Wang S, Weaver VM, Pedram K
    Nat Methods. 2025 Feb 06:. doi: 10.1038/s41592-024-02590-2

    All multicellular systems produce and dynamically regulate extracellular matrices (ECMs) that play essential roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small-molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, non-perturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.

    View Publication Page
    12/24/24 | Days-old zebrafish rapidly learn to recognize threatening agents through noradrenergic and forebrain circuits.
    Zocchi D, Nguyen M, Marquez-Legorreta E, Siwanowicz I, Singh C, Prober DA, Hillman EM, Ahrens MB
    Curr Biol. 2024 Dec 19:. doi: 10.1016/j.cub.2024.11.057

    Animals need to rapidly learn to recognize and avoid predators. This ability may be especially important for young animals due to their increased vulnerability. It is unknown whether, and how, nascent vertebrates are capable of such rapid learning. Here, we used a robotic predator-prey interaction assay to show that 1 week after fertilization-a developmental stage where they have approximately 1% the number of neurons of adults-zebrafish larvae rapidly and robustly learn to recognize a stationary object as a threat after the object pursues the fish for ∼1 min. Larvae continue to avoid the threatening object after it stops moving and can learn to distinguish threatening from non-threatening objects of a different color. Whole-brain functional imaging revealed the multi-timescale activity of noradrenergic neurons and forebrain circuits that encoded the threat. Chemogenetic ablation of those populations prevented the learning. Thus, a noradrenergic and forebrain multiregional network underlies the ability of young vertebrates to rapidly learn to recognize potential predators within their first week of life.

    View Publication Page
    12/24/24 | Days-old zebrafish rapidly learn to recognize threatening agents through noradrenergic and forebrain circuits.
    Zocchi D, Nguyen M, Marquez-Legorreta E, Siwanowicz I, Singh C, Prober DA, Hillman EM, Ahrens MB
    Curr Biol. 12/2024;35(1):163-176.e4. doi: 10.1016/j.cub.2024.11.057

    Animals need to rapidly learn to recognize and avoid predators. This ability may be especially important for young animals due to their increased vulnerability. It is unknown whether, and how, nascent vertebrates are capable of such rapid learning. Here, we used a robotic predator-prey interaction assay to show that 1 week after fertilization-a developmental stage where they have approximately 1% the number of neurons of adults-zebrafish larvae rapidly and robustly learn to recognize a stationary object as a threat after the object pursues the fish for ∼1 min. Larvae continue to avoid the threatening object after it stops moving and can learn to distinguish threatening from non-threatening objects of a different color. Whole-brain functional imaging revealed the multi-timescale activity of noradrenergic neurons and forebrain circuits that encoded the threat. Chemogenetic ablation of those populations prevented the learning. Thus, a noradrenergic and forebrain multiregional network underlies the ability of young vertebrates to rapidly learn to recognize potential predators within their first week of life.

    View Publication Page
    12/16/24 | Ketamine induces plasticity in a norepinephrine-astroglial circuit to promote behavioral perseverance.
    Duque M, Chen AB, Hsu E, Narayan S, Rymbek A, Begum S, Saher G, Cohen AE, Olson DE, Li Y, Prober DA, Bergles DE, Fishman MC, Engert F, Ahrens MB
    Neuron. 2024 Dec 16(113):1-15. doi: 10.1016/j.neuron.2024.11.011

    Transient exposure to ketamine can trigger lasting changes in behavior and mood. We found that brief ketamine exposure causes long-term suppression of futility-induced passivity in larval zebrafish, reversing the "giving-up" response that normally occurs when swimming fails to cause forward movement. Whole-brain imaging revealed that ketamine hyperactivates the norepinephrine-astroglia circuit responsible for passivity. After ketamine washout, this circuit exhibits hyposensitivity to futility, leading to long-term increased perseverance. Pharmacological, chemogenetic, and optogenetic manipulations show that norepinephrine and astrocytes are necessary and sufficient for ketamine's long-term perseverance-enhancing aftereffects. In vivo calcium imaging revealed that astrocytes in adult mouse cortex are similarly activated during futility in the tail suspension test and that acute ketamine exposure also induces astrocyte hyperactivation. The cross-species conservation of ketamine's modulation of noradrenergic-astroglial circuits and evidence that plasticity in this pathway can alter the behavioral response to futility hold promise for identifying new strategies to treat affective disorders.

    View Publication Page
    07/16/24 | Closing the Experiment-Modeling-Perturbation Loop in Whole-Brain Neuroscience.
    Ahrens MB
    Neurosci Bull. 2024 Jul 16:. doi: 10.1007/s12264-024-01253-8