Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Dickson Lab / Publications
general_search_page-panel_pane_1 | views_panes

41 Publications

Showing 1-10 of 41 results
02/09/22 | Ascending neurons convey behavioral state to integrative sensory and action selection centers in the brain
Chin-Lin Chen , Florian Aymanns , Ryo Minegishi , Victor D. V. Matsuda , Nicolas Talabot , Semih Günel , Barry J. Dickson , Pavan Ramdya
bioRxiv. 2022 Feb 09:. doi: 10.1101/2022.02.09.479566

Knowledge of one’s own behavioral state—whether one is walking, grooming, or resting—is critical for contextualizing sensory cues including interpreting visual motion and tracking odor sources. Additionally, awareness of one’s own posture is important to avoid initiating destabilizing or physically impossible actions. Ascending neurons (ANs), interneurons in the vertebrate spinal cord or insect ventral nerve cord (VNC) that project to the brain, may provide such high-fidelity behavioral state signals. However, little is known about what ANs encode and where they convey signals in any brain. To address this gap, we performed a large-scale functional screen of AN movement encoding, brain targeting, and motor system patterning in the adult fly, Drosophila melanogaster. Using a new library of AN sparse driver lines, we measured the functional properties of 247 genetically-identifiable ANs by performing two-photon microscopy recordings of neural activity in tethered, behaving flies. Quantitative, deep network-based neural and behavioral analyses revealed that ANs nearly exclusively encode high-level behaviors—primarily walking as well as resting and grooming—rather than low-level joint or limb movements. ANs that convey self-motion—resting, walking, and responses to gust-like puff stimuli—project to the brain’s anterior ventrolateral protocerebrum (AVLP), a multimodal, integrative sensory hub, while those that encode discrete actions—eye grooming, turning, and proboscis extension—project to the brain’s gnathal ganglion (GNG), a locus for action selection. The structure and polarity of AN projections within the VNC are predictive of their functional encoding and imply that ANs participate in motor computations while also relaying state signals to the brain. Illustrative of this are ANs that temporally integrate proboscis extensions over tens-of-seconds, likely through recurrent interconnectivity. Thus, in line with long-held theoretical predictions, ascending populations convey high-level behavioral state signals almost exclusively to brain regions implicated in sensory feature contextualization and action selection.

View Publication Page
09/02/21 | Classification and genetic targeting of cell types in the primary taste and premotor center of the adult brain.
Sterne GR, Otsuna H, Dickson BJ, Scott K
eLife. 2021 Sep 02;10:. doi: 10.7554/eLife.71679

Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult , comprising approximately one third of all SEZ neurons. We characterize the single cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.

View Publication Page
01/01/21 | Neural circuit mechanisms of sexual receptivity in Drosophila females.
Wang K, Wang F, Forknall N, Yang T, Patrick C, Parekh R, Dickson BJ
Nature. 2021 Jan 01;589(7843):577-81. doi: 10.1038/s41586-020-2972-7

Choosing a mate is one of the most consequential decisions a female will make during her lifetime. A female fly signals her willingness to mate by opening her vaginal plates, allowing a courting male to copulate. Vaginal plate opening (VPO) occurs in response to the male courtship song and is dependent on the mating status of the female. How these exteroceptive (song) and interoceptive (mating status) inputs are integrated to regulate VPO remains unknown. Here we characterize the neural circuitry that implements mating decisions in the brain of female Drosophila melanogaster. We show that VPO is controlled by a pair of female-specific descending neurons (vpoDNs). The vpoDNs receive excitatory input from auditory neurons (vpoENs), which are tuned to specific features of the D. melanogaster song, and from pC1 neurons, which encode the mating status of the female. The song responses of vpoDNs, but not vpoENs, are attenuated upon mating, accounting for the reduced receptivity of mated females. This modulation is mediated by pC1 neurons. The vpoDNs thus directly integrate the external and internal signals that control the mating decisions of Drosophila females.

View Publication Page
12/02/20 | Distributed control of motor circuits for backward walking in Drosophila.
Feng K, Sen R, minegishi r, Dübbert M, Bockemühl T, Büschges A, Dickson BJ
Nature Communications. 2020 Dec 02;11(1):6166. doi: 10.1038/s41467-020-19936-x

How do descending inputs from the brain control leg motor circuits to change how an animal walks? Conceptually, descending neurons are thought to function either as command-type neurons, in which a single type of descending neuron exerts a high-level control to elicit a coordinated change in motor output, or through a population coding mechanism, whereby a group of neurons, each with local effects, act in combination to elicit a global motor response. The Drosophila Moonwalker Descending Neurons (MDNs), which alter leg motor circuit dynamics so that the fly walks backwards, exemplify the command-type mechanism. Here, we identify several dozen MDN target neurons within the leg motor circuits, and show that two of them mediate distinct and highly-specific changes in leg muscle activity during backward walking: LBL40 neurons provide the hindleg power stroke during stance phase; LUL130 neurons lift the legs at the end of stance to initiate swing. Through these two effector neurons, MDN directly controls both the stance and swing phases of the backward stepping cycle. These findings suggest that command-type descending neurons can also operate through the distributed control of local motor circuits.

View Publication Page
10/05/20 | Circuit and behavioral mechanisms of sexual rejection by drosophila females.
Wang F, Wang K, Forknall N, Parekh R, Dickson BJ
Current Biology. 2020 Oct 05;30(19):. doi: 10.1016/j.cub.2020.07.083

The mating decisions of Drosophila melanogaster females are primarily revealed through either of two discrete actions: opening of the vaginal plates to allow copulation, or extrusion of the ovipositor to reject the male. Both actions are triggered by the male courtship song, and both are dependent upon the female's mating status. Virgin females are more likely to open their vaginal plates in response to song; mated females are more likely to extrude their ovipositor. Here, we examine the neural cause and behavioral consequence of ovipositor extrusion. We show that the DNp13 descending neurons act as command-type neurons for ovipositor extrusion, and that ovipositor extrusion is an effective deterrent only when performed by females that have previously mated. The DNp13 neurons respond to male song via direct synaptic input from the pC2l auditory neurons. Mating status does not modulate the song responses of DNp13 neurons, but rather how effectively they can engage the motor circuits for ovipositor extrusion. We present evidence that mating status information is mediated by ppk sensory neurons in the uterus, which are activated upon ovulation. Vaginal plate opening and ovipositor extrusion are thus controlled by anatomically and functionally distinct circuits, highlighting the diversity of neural decision-making circuits even in the context of closely related behaviors with shared exteroceptive and interoceptive inputs.

View Publication Page
06/25/20 | Controlling motor neurons of every muscle for fly proboscis reaching.
McKellar CE, Siwanowicz I, Dickson BJ, Simpson JH
eLife. 2020 Jun 25;9:. doi: 10.7554/eLife.54978

We describe the anatomy of all the primary motor neurons in the fly proboscis and characterize their contributions to its diverse reaching movements. Pairing this behavior with the wealth of genetic tools offers the possibility to study motor control at single-neuron resolution, and soon throughout entire circuits. As an entry to these circuits, we provide detailed anatomy of proboscis motor neurons, muscles, and joints. We create a collection of fly strains to individually manipulate every proboscis muscle through control of its motor neurons, the first such collection for an appendage. We generate a model of the action of each proboscis joint, and find that only a small number of motor neurons are needed to produce proboscis reaching. Comprehensive control of each motor element in this numerically simple system paves the way for future study of both reflexive and flexible movements of this appendage.

View Publication Page
03/02/20 | Neural circuitry linking mating and egg laying in Drosophila females.
Wang F, Wang K, Forknall N, Patrick C, Yang T, Parekh R, Bock D, Dickson BJ
Nature. 2020 Mar 02;579(7797):101-105. doi: 10.1038/s41586-020-2055-9

Mating and egg laying are tightly cooordinated events in the reproductive life of all oviparous females. Oviposition is typically rare in virgin females but is initiated after copulation. Here we identify the neural circuitry that links egg laying to mating status in Drosophila melanogaster. Activation of female-specific oviposition descending neurons (oviDNs) is necessary and sufficient for egg laying, and is equally potent in virgin and mated females. After mating, sex peptide-a protein from the male seminal fluid-triggers many behavioural and physiological changes in the female, including the onset of egg laying. Sex peptide is detected by sensory neurons in the uterus, and silences these neurons and their postsynaptic ascending neurons in the abdominal ganglion. We show that these abdominal ganglion neurons directly activate the female-specific pC1 neurons. GABAergic (γ-aminobutyric-acid-releasing) oviposition inhibitory neurons (oviINs) mediate feed-forward inhibition from pC1 neurons to both oviDNs and their major excitatory input, the oviposition excitatory neurons (oviENs). By attenuating the abdominal ganglion inputs to pC1 neurons and oviINs, sex peptide disinhibits oviDNs to enable egg laying after mating. This circuitry thus coordinates the two key events in female reproduction: mating and egg laying.

View Publication Page
11/22/19 | TwoLumps ascending neurons mediate touch-evoked reversal of walking direction in Drosophila.
Sen R, Wang K, Dickson BJ
Current Biology. 2019 Nov 22;29(24):4337-44. doi: 10.1016/j.cub.2019.11.004

External cues, including touch, enable walking animals to flexibly maneuver around obstacles and extricate themselves from dead-ends (for reviews, see [1-3]). In a screen for neurons that enable Drosophila melanogaster to retreat when it encounters a dead-end, we identified a pair of ascending neurons, the TwoLumps Ascending (TLA) neurons. Silencing TLA activity impairs backward locomotion, whereas optogenetic activation triggers backward walking. TLA-induced reversal is mediated in part by the Moonwalker Descending Neurons (MDNs) [4], which receive excitatory input from the TLAs. Silencing the TLAs decreases the extent to which freely walking flies back up upon encountering a physical barrier in the dark, and TLAs show calcium responses to optogenetic activation of neurons expressing the mechanosensory channel NOMPC. We infer that TLAs convey feedforward mechanosensory stimuli to transiently activate MDNs in response to anterior body touch.

View Publication Page
07/06/19 | Cellular level analysis of the locomotor neural circuits in Drosophila melanogaster.
minegishi r, Feng K, Dickson B
Biomimetic and Biohybrid Systems. 2019 Jul 6:334-7
03/12/19 | Split-QF system for fine-tuned transgene expression in Drosophila.
Riabinina O, Vernon SW, Dickson BJ, Baines RA
Genetics. 2019 Mar 12;212(1):53-63. doi: 10.1534/genetics.119.302034

The Q-system is a binary expression system that works well across species. Here we report the development and demonstrate applications of a split-QF system that drives strong expression in , is repressible by QS and inducible by a small non-toxic molecule quinic acid. The split-QF system is fully compatible with existing split-GAL4 and split-LexA lines, thus greatly expanding the range of possible advanced intersectional experiments and anatomical, physiological and behavioural assays in and in other organisms.

View Publication Page