Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Dudman Lab / Publications
general_search_page-panel_pane_1 | views_panes

33 Publications

Showing 1-10 of 33 results
01/03/19 | High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging .
Meng G, Liang Y, Sarsfield S, Jiang W, Lu R, Dudman JT, Aponte Y, Ji N
eLife. 2019 Jan 03;8:. doi: 10.7554/eLife.40805

Optical imaging has become a powerful tool for studying brains . The opacity of adult brains makes microendoscopy, with an optical probe such as a gradient index (GRIN) lens embedded into brain tissue to provide optical relay, the method of choice for imaging neurons and neural activity in deeply buried brain structures. Incorporating a Bessel focus scanning module into two-photon fluorescence microendoscopy, we extended the excitation focus axially and improved its lateral resolution. Scanning the Bessel focus in 2D, we imaged volumes of neurons at high-throughput while resolving fine structures such as synaptic terminals. We applied this approach to the volumetric anatomical imaging of dendritic spines and axonal boutons in the mouse hippocampus, and functional imaging of GABAergic neurons in the mouse lateral hypothalamus .

View Publication Page
10/16/18 | Expanding the optogenetics toolkit by topological inversion of rhodopsins.
Brown J, Behnam R, Coddington L, Tervo DG, Martin K, Proskurin M, Kuleshova E, Park J, Phillips J, Bergs AC, Gottschalk A, Dudman JT, Karpova AY
Cell. 2018 Oct 16;175(4):1131-40. doi: 10.1016/j.cell.2018.09.026

Targeted manipulation of activity in specific populations of neurons is important for investigating the neural circuit basis of behavior. Optogenetic approaches using light-sensitive microbial rhodopsins have permitted manipulations to reach a level of temporal precision that is enabling functional circuit dissection. As demand for more precise perturbations to serve specific experimental goals increases, a palette of opsins with diverse selectivity, kinetics, and spectral properties will be needed. Here, we introduce a novel approach of "topological engineering"-inversion of opsins in the plasma membrane-and demonstrate that it can produce variants with unique functional properties of interest for circuit neuroscience. In one striking example, inversion of a Channelrhodopsin variant converted it from a potent activator into a fast-acting inhibitor that operates as a cation pump. Our findings argue that membrane topology provides a useful orthogonal dimension of protein engineering that immediately permits as much as a doubling of the available toolkit.

View Publication Page
10/15/18 | The timing of action determines reward prediction signals in identified midbrain dopamine neurons.
Coddington LT, Dudman JT
Nature Neuroscience. 2018 Oct 15;21(11):1563-73. doi: 10.1038/s41593-018-0245-7

Animals adapt their behavior in response to informative sensory cues using multiple brain circuits. The activity of midbrain dopaminergic neurons is thought to convey a critical teaching signal: reward-prediction error. Although reward-prediction error signals are thought to be essential to learning, little is known about the dynamic changes in the activity of midbrain dopaminergic neurons as animals learn about novel sensory cues and appetitive rewards. Here we describe a large dataset of cell-attached recordings of identified dopaminergic neurons as naive mice learned a novel cue-reward association. During learning midbrain dopaminergic neuron activity results from the summation of sensory cue-related and movement initiation-related response components. These components are both a function of reward expectation yet they are dissociable. Learning produces an increasingly precise coordination of action initiation following sensory cues that results in apparent reward-prediction error correlates. Our data thus provide new insights into the circuit mechanisms that underlie a critical computation in a highly conserved learning circuit.

View Publication Page
03/24/18 | A proposed circuit computation in basal ganglia: History-dependent gain.
Yttri EA, Dudman JT
Movement Disorders : official journal of the Movement Disorder Society. 2018 Mar 24:. doi: 10.1002/mds.27321

In this Scientific Perspectives we first review the recent advances in our understanding of the functional architecture of basal ganglia circuits. Then we argue that these data can best be explained by a model in which basal ganglia act to control the gain of movement kinematics to shape performance based on prior experience, which we refer to as a history-dependent gain computation. Finally, we discuss how insights from the history-dependent gain model might translate from the bench to the bedside, primarily the implications for the design of adaptive deep brain stimulation. Thus, we explicate the key empirical and conceptual support for a normative, computational model with substantial explanatory power for the broad role of basal ganglia circuits in health and disease. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

View Publication Page
12/31/17 | A topographic axis of transcriptional identity in thalamus.
Phillips JW, Schulman A, Hara E, Liu C, Shields BC, Korff W, Lemire A, Dudman JT, Nelson SB, Hantman AW
bioRxiv. 2017 Dec 31:241315. doi: 10.1101/241315

A fundamental goal in neuroscience is to uncover common principles by which different modalities of information are processed. In the mammalian brain, thalamus acts as the essential hub for forebrain circuits handling inputs from sensory, motor, limbic, and cognitive pathways. Whether thalamus imposes common transformations on each of these modalities is unknown. Molecular characterization offers a principled approach to revealing the organization of thalamus. Using near-comprehensive and projection-specific transcriptomic sequencing, we found that almost all thalamic nuclei fit into one of three profiles. These profiles lie on a single axis of genetic variance which is aligned with the mediolateral spatial axis of thalamus. Genes defining this axis of variance include receptors and ion channels, providing a systematic diversification of input/output transformations across the topography of thalamus. Single cell transcriptional profiling revealed graded heterogeneity within individual thalamic nuclei, demonstrating that a spectrum of cell types and potentially diverse input/output transforms exist within a given thalamic nucleus. Together, our data argue for an archetypal organization of pathways serving diverse input modalities, and provides a comprehensive organizational scheme for thalamus.

View Publication Page
12/22/17 | Emergence of reward expectation signals in identified dopamine neurons.
Coddington LT, Dudman JT
bioRxiv. 2017 Dec 22:. doi: 10.1101/238881

Coherent control of purposive actions emerges from the coordination of multiple brain circuits during learning. Dissociable brain circuits and cell-types are thought to preferentially participate in distinct learning mechanisms. For example, the activity of midbrain dopamine (mDA) neurons is proposed to primarily, or even exclusively, reflect reward prediction error signals in well-trained animals. To study the specific contribution of individual circuits requires observing changes before tight functional coordination is achieved. However, little is known about the detailed timing of the emergence of reward-related representations in dopaminergic neurons. Here we recorded activity of identified dopaminergic neurons as naive mice learned a novel stimulus-reward association. We found that at early stages of learning mDA neuron activity reflected both external (sensory) and internal (action initiation) causes of reward expectation. The increasingly precise correlation of action initiation with sensory stimuli rather than an evaluation of outcomes governed mDA neuron activity. Thus, our data demonstrate that mDA neuron activity early in learning does not reflect errors, but is more akin to a Hebbian learning signal - providing new insight into a critical computation in a highly conserved, essential learning circuit.

View Publication Page
06/29/17 | Desensitized D2 autoreceptors are resistant to trafficking.
Robinson BG, Bunzow JR, Grimm JB, Lavis LD, Dudman JT, Brown J, Neve KA, Williams JT
Scientific Reports. 2017 Jun 29;7(1):4379. doi: 10.1038/s41598-017-04728-z

Dendritic release of dopamine activates dopamine D2 autoreceptors, which are inhibitory G protein-coupled receptors (GPCRs), to decrease the excitability of dopamine neurons. This study used tagged D2 receptors to identify the localization and distribution of these receptors in living midbrain dopamine neurons. GFP-tagged D2 receptors were found to be unevenly clustered on the soma and dendrites of dopamine neurons within the substantia nigra pars compacta (SNc). Physiological signaling and desensitization of the tagged receptors were not different from wild type receptors. Unexpectedly, upon desensitization the tagged D2 receptors were not internalized. When tagged D2 receptors were expressed in locus coeruleus neurons, a desensitizing protocol induced significant internalization. Likewise, when tagged µ-opioid receptors were expressed in dopamine neurons they too were internalized. The distribution and lack of agonist-induced internalization of D2 receptors on dopamine neurons indicate a purposefully regulated localization of these receptors.

View Publication Page
04/07/17 | Deconstructing behavioral neuropharmacology with cellular specificity.
Shields BC, Kahuno E, Kim C, Apostolides PF, Brown J, Lindo S, Mensh BD, Dudman JT, Lavis LD, Tadross MR
Science (New York, N.Y.). 2017 Apr 07;356(6333):. doi: 10.1126/science.aaj2161

Behavior has molecular, cellular, and circuit determinants. However, because many proteins are broadly expressed, their acute manipulation within defined cells has been difficult. Here, we combined the speed and molecular specificity of pharmacology with the cell type specificity of genetic tools. DART (drugs acutely restricted by tethering) is a technique that rapidly localizes drugs to the surface of defined cells, without prior modification of the native target. We first developed an AMPAR antagonist DART, with validation in cultured neuronal assays, in slices of mouse dorsal striatum, and in behaving mice. In parkinsonian animals, motor deficits were causally attributed to AMPARs in indirect spiny projection neurons (iSPNs) and to excess phasic firing of tonically active interneurons (TANs). Together, iSPNs and TANs (i.e., D2 cells) drove akinesia, whereas movement execution deficits reflected the ratio of AMPARs in D2 versus D1 cells. Finally, we designed a muscarinic antagonist DART in one iteration, demonstrating applicability of the method to diverse targets.

View Publication Page
10/19/16 | A designer AAV variant permits efficient retrograde access to projection neurons.
Tervo DG, Hwang B, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang C, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY
Neuron. 2016 Oct 19;92(2):372-82. doi: 10.1016/j.neuron.2016.09.021

Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.

View Publication Page
05/02/16 | Opponent and bidirectional control of movement velocity in the basal ganglia.
Yttri EA, Dudman JT
Nature. 2016 May 2:. doi: 10.1038/nature17639

For goal-directed behaviour it is critical that we can both select the appropriate action and learn to modify the underlying movements (for example, the pitch of a note or velocity of a reach) to improve outcomes. The basal ganglia are a critical nexus where circuits necessary for the production of behaviour, such as the neocortex and thalamus, are integrated with reward signalling to reinforce successful, purposive actions. The dorsal striatum, a major input structure of basal ganglia, is composed of two opponent pathways, direct and indirect, thought to select actions that elicit positive outcomes and suppress actions that do not, respectively. Activity-dependent plasticity modulated by reward is thought to be sufficient for selecting actions in the striatum. Although perturbations of basal ganglia function produce profound changes in movement, it remains unknown whether activity-dependent plasticity is sufficient to produce learned changes in movement kinematics, such as velocity. Here we use cell-type-specific stimulation in mice delivered in closed loop during movement to demonstrate that activity in either the direct or indirect pathway is sufficient to produce specific and sustained increases or decreases in velocity, without affecting action selection or motivation. These behavioural changes were a form of learning that accumulated over trials, persisted after the cessation of stimulation, and were abolished in the presence of dopamine antagonists. Our results reveal that the direct and indirect pathways can each bidirectionally control movement velocity, demonstrating unprecedented specificity and flexibility in the control of volition by the basal ganglia.

View Publication Page