Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4108 Publications

Showing 1661-1670 of 4108 results
09/21/17 | Genomic probes.
Singer RH, Deng W, Lionnet T
USPTO. 2017 Sep 21;A1:

Labeled probes, and methods of use thereof, comprise a Cas polypeptide conjugated to gRNA that is specific for target nucleic acid sequences, including genomic DNA sequences. The probes and methods can be used to label nucleic acid sequences without global DNA denaturation. The presently-disclosed subject matter meets some or all of the above identified needs, as will become evident to those of ordinary skill in the art after a study of information provided in this document.

View Publication Page
05/14/15 | Genomic signatures of evolutionary transitions from solitary to group living.
Kapheim KM, Pan H, Li C, Salzberg SL, Puiu D, Magoc T, Robertson HM, Hudson ME, Venkat A, Fischman BJ, Hernandez A, Yandell M, Ence D, Holt C, Yocum GD, Kemp WP, Bosch J, Waterhouse RM, Zdobnov EM, Stolle E, Kraus FB, Helbing S, Moritz RF, Glastad KM, Hunt BG, Goodisman MA, Hauser F, Grimmelikhuijzen CJ, Pinheiro DG, Nunes FM, Soares MP, Tanaka ÉD, Simões ZL, Hartfelder K, Evans JD, Barribeau SM, Johnson RM, Massey JH, Southey BR, Hasselmann M, Hamacher D, Biewer M, Kent CF, Zayed A, Blatti C, Sinha S, Johnston JS, Hanrahan SJ, Kocher SD, Wang J, Robinson GE, Zhang G
Science. 2015 May 14:. doi: 10.1126/science.aaa4788

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of ten bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.

View Publication Page
Svoboda Lab
06/01/05 | Geometric and functional organization of cortical circuits.
Shepherd GM, Stepanyants A, Bureau I, Chklovskii D, Svoboda K
Nature Neuroscience. 2005 Jun;8(6):782-90. doi: 10.1016/j.tins.2005.05.006

Can neuronal morphology predict functional synaptic circuits? In the rat barrel cortex, ’barrels’ and ’septa’ delineate an orderly matrix of cortical columns. Using quantitative laser scanning photostimulation we measured the strength of excitatory projections from layer 4 (L4) and L5A to L2/3 pyramidal cells in barrel- and septum-related columns. From morphological reconstructions of excitatory neurons we computed the geometric circuit predicted by axodendritic overlap. Within most individual projections, functional inputs were predicted by geometry and a single scale factor, the synaptic strength per potential synapse. This factor, however, varied between projections and, in one case, even within a projection, up to 20-fold. Relationships between geometric overlap and synaptic strength thus depend on the laminar and columnar locations of both the pre- and postsynaptic neurons, even for neurons of the same type. A large plasticity potential appears to be incorporated into these circuits, allowing for functional ’tuning’ with fixed axonal and dendritic arbor geometry.

View Publication Page
04/11/02 | Geometry and structural plasticity of synaptic connectivity.
Stepanyants A, Hof PR, Chklovskii DB
Neuron. 2002 Apr 11;34(2):275-88. doi: 10.1016/j.tins.2005.05.006

Changes in synaptic connectivity patterns through the formation and elimination of dendritic spines may contribute to structural plasticity in the brain. We characterize this contribution quantitatively by estimating the number of different synaptic connectivity patterns attainable without major arbor remodeling. This number depends on the ratio of the synapses on a dendrite to the axons that pass within a spine length of that dendrite. We call this ratio the filling fraction and calculate it from geometrical analysis and anatomical data. The filling fraction is 0.26 in mouse neocortex, 0.22-0.34 in rat hippocampus. In the macaque visual cortex, the filling fraction increases by a factor of 1.6-1.8 from area V1 to areas V2, V4, and 7a. Since the filling fraction is much smaller than 1, spine remodeling can make a large contribution to structural plasticity.

View Publication Page
Looger Lab
10/31/24 | GESIAP3.0: Sensor-based Image Analysis Program for Transmission Visualization In Vivo
Zhu RE, Diao X, Liu X, Ru Q, Wu Z, Zhang Z, Looger LL, Zhu J
bioRxiv. 2024 Oct 31:. doi: 10.1101/2024.10.28.620522

Synaptic transmission mediated by various neurotransmitters influences a wide range of behaviors. However, understanding how neuromodulatory transmitters encode diverse behaviors and affect their functions remains challenging. Here, we introduce GESIAP3.0, an advanced, third-generation image analysis program based on genetically encoded sensors. This tool enables precise quantitative analysis of transmission in both awake, freely moving animals and immobilized subjects. GESIAP3.0 incorporates movement correction algorithms that effectively eliminate image displacement in behaving animals while optimizing synaptic information extraction and simplifying computations on commodity computers. Quantitative analysis of cholinergic, dopaminergic, and serotonergic transmission, corrected for tissue movement, revealed synaptic properties consistent with measurements from ex vivo wide-field and in vivo two-photon imaging under stable conditions. This validates the applicability of GESIAP3.0 for analyzing synaptic properties of neuromodulatory transmission in behaving animals.

View Publication Page
Fetter Lab
02/07/08 | GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems.
Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD, Shen K, Bargmann CI
Neuron. 2008 Feb 7;57(3):353-63. doi: 10.1016/j.neuron.2007.11.030

The identification of synaptic partners is challenging in dense nerve bundles, where many processes occupy regions beneath the resolution of conventional light microscopy. To address this difficulty, we have developed GRASP, a system to label membrane contacts and synapses between two cells in living animals. Two complementary fragments of GFP are expressed on different cells, tethered to extracellular domains of transmembrane carrier proteins. When the complementary GFP fragments are fused to ubiquitous transmembrane proteins, GFP fluorescence appears uniformly along membrane contacts between the two cells. When one or both GFP fragments are fused to synaptic transmembrane proteins, GFP fluorescence is tightly localized to synapses. GRASP marks known synaptic contacts in C. elegans, correctly identifies changes in mutants with altered synaptic specificity, and can uncover new information about synaptic locations as confirmed by electron microscopy. GRASP may prove particularly useful for defining connectivity in complex nervous systems.

View Publication Page
12/01/96 | GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion.
Straight AF, Belmont AS, Robinett CC, Murray AW
Current Biology. 1996 Dec 1;6(12):1599-608

Precise control of sister chromatid separation is essential for the accurate transmission of genetic information. Sister chromatids must remain linked to each other from the time of DNA replication until the onset of chromosome segregation, when the linkage must be promptly dissolved. Recent studies suggest that the machinery that is responsible for the destruction of mitotic cyclins also degrades proteins that play a role in maintaining sister chromatid linkage, and that this machinery is regulated by the spindle-assembly checkpoint. Studies on these problems in budding yeast are hampered by the inability to resolve its chromosomes by light or electron microscopy.

View Publication Page
Looger Lab
06/01/16 | GFP-aequorin protein sensor for ex vivo and in vivo imaging of Ca(2+) dynamics in high-Ca(2+) organelles.
Navas-Navarro P, Rojo-Ruiz J, Rodriguez-Prados M, Ganfornina MD, Looger LL, Alonso MT, García-Sancho J
Cell Chemical Biology. 2016 Jun 1:. doi: 10.1016/j.chembiol.2016.05.010

Proper functioning of organelles such as the ER or the Golgi apparatus requires luminal accumulation of Ca(2+) at high concentrations. Here we describe a ratiometric low-affinity Ca(2+) sensor of the GFP-aequorin protein (GAP) family optimized for measurements in high-Ca(2+) concentration environments. Transgenic animals expressing the ER-targeted sensor allowed monitoring of Ca(2+) signals inside the organelle. The use of the sensor was demonstrated under three experimental paradigms: (1) ER Ca(2+) oscillations in cultured astrocytes, (2) ex vivo functional mapping of cholinergic receptors triggering ER Ca(2+) release in acute hippocampal slices from transgenic mice, and (3) in vivo sarcoplasmic reticulum Ca(2+) dynamics in the muscle of transgenic flies. Our results provide proof of the suitability of the new biosensors to monitor Ca(2+) dynamics inside intracellular organelles under physiological conditions and open an avenue to explore complex Ca(2+) signaling in animal models of health and disease.

View Publication Page
Looger LabAhrens Lab
06/27/19 | Glia accumulate evidence that actions are futile and suppress unsuccessful behavior.
Mu Y, Bennett DV, Rubinov M, Narayan S, Yang C, Tanimoto M, Mensh BD, Looger LL, Ahrens MB
Cell. 2019 Jun 27;178(1):27-43. doi: 10.1016/j.cell.2019.05.050

When a behavior repeatedly fails to achieve its goal, animals often give up and become passive, which can be strategic for preserving energy or regrouping between attempts. It is unknown how the brain identifies behavioral failures and mediates this behavioral-state switch. In larval zebrafish swimming in virtual reality, visual feedback can be withheld so that swim attempts fail to trigger expected visual flow. After tens of seconds of such motor futility, animals became passive for similar durations. Whole-brain calcium imaging revealed noradrenergic neurons that responded specifically to failed swim attempts and radial astrocytes whose calcium levels accumulated with increasing numbers of failed attempts. Using cell ablation and optogenetic or chemogenetic activation, we found that noradrenergic neurons progressively activated brainstem radial astrocytes, which then suppressed swimming. Thus, radial astrocytes perform a computation critical for behavior: they accumulate evidence that current actions are ineffective and consequently drive changes in behavioral states.

View Publication Page
06/19/11 | Glia instruct developmental neuronal remodeling through TGF-β signaling.
Awasaki T, Huang Y, O’Connor MB, Lee T
Nature Neuroscience. 2011 Jun 19;14(7):821-3. doi: 10.1038/nn.2833

We found that glia secrete myoglianin, a TGF-β ligand, to instruct developmental neural remodeling in Drosophila. Glial myoglianin upregulated neuronal expression of an ecdysone nuclear receptor that triggered neurite remodeling following the late-larval ecdysone peak. Thus glia orchestrate developmental neural remodeling not only by engulfment of unwanted neurites but also by enabling neuron remodeling.

View Publication Page