Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4102 Publications

Showing 2571-2580 of 4102 results

The central complex, a set of neuropils in the center of the insect brain, plays a crucial role in spatial aspects of sensory integration and motor control. Stereotyped neurons interconnect these neuropils with one another and with accessory structures. We screened over 5000 Drosophila melanogaster GAL4 lines for expression in two neuropils, the noduli (NO) of the central complex and the asymmetrical body (AB), and used multicolor stochastic labelling to analyze the morphology, polarity and organization of individual cells in a subset of the GAL4 lines that showed expression in these neuropils. We identified nine NO and three AB cell types and describe them here. The morphology of the NO neurons suggests that they receive input primarily in the lateral accessory lobe and send output to each of the six paired noduli. We demonstrate that the AB is a bilateral structure which exhibits asymmetry in size between the left and right bodies. We show that the AB neurons directly connect the AB to the central complex and accessory neuropils, that they target both the left and right ABs, and that one cell type preferentially innervates the right AB. We propose that the AB be considered a central complex neuropil in Drosophila. Finally, we present highly restricted GAL4 lines for most identified protocerebral bridge, NO and AB cell types. These lines, generated using the split-GAL4 method, will facilitate anatomical studies, behavioral assays, and physiological experiments. 

View Publication Page
Cardona Lab
08/01/07 | Neurobiology of the basal platyhelminth Macrostomum lignano: map and digital 3D model of the juvenile brain neuropile.
Morris J, Cardona A, De Miguel-Bonet MD, Hartenstein V
Development Genes & Evolution. 2007 Aug;217(8):569-84. doi: 10.1007/s00427-007-0166-z

We have analyzed brain structure in Macrostomum lignano, a representative of the basal platyhelminth taxon Macrostomida. Using confocal microscopy and digital 3D modeling software on specimens labeled with general markers for neurons (tyrTub), muscles (phalloidin), and nuclei (Sytox), an atlas and digital model of the juvenile Macrostomum brain was generated. The brain forms a ganglion with a central neuropile surrounded by a cortex of neuronal cell bodies. The neuropile contains a stereotypical array of compact axon bundles, as well as branched terminal axons and dendrites. Muscle fibers penetrate the flatworm brain horizontally and vertically at invariant positions. Beside the invariant pattern of neurite bundles, these "cerebral muscles" represent a convenient system of landmarks that help define discrete compartments in the juvenile brain. Commissural axon bundles define a dorsal and ventro-medial neuropile compartment, respectively. Longitudinal axons that enter the neuropile through an invariant set of anterior and posterior nerve roots define a ventro-basal and a central medial compartment in the neuropile. Flanking these "fibrous" compartments are neuropile domains that lack thick axon bundles and are composed of short collaterals and terminal arborizations of neurites. Two populations of neurons, visualized by antibodies against FMRFamide and serotonin, respectively, were mapped relative to compartment boundaries. This study will aid in the documentation and interpretation of patterns of gene expression, as well as functional studies, in the developing Macrostomum brain.

View Publication Page
08/17/17 | Neurobiology: A bitter-sweet symphony.
Li J, Luo L
Nature. 08/2017;548(7667):285-287. doi: 10.1038/nature23537

No abstract available.

View Publication Page
03/07/02 | Neurobiology: a cool ion channel.
Zuker CS
Nature. 2002 Mar 7;416(6876):27-8. doi: 10.1038/416027a
Svoboda Lab
11/18/15 | Neurodata without borders: creating a common data format for neurophysiology
Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari H, Peron S, Li N, Peyrache A
Neuron. 2015 Nov 18;88(4):629-34. doi: 10.1016/j.neuron.2015.10.025

The Neurodata Without Borders (NWB) initiative promotes data standardization in neuroscience to increase research reproducibility and opportunities. In the first NWB pilot project, neurophysiologists and software developers produced a common data format for recordings and metadata of cellular electrophysiology and optical imaging experiments. The format specification, application programming interfaces, and sample datasets have been released.

View Publication Page
Tjian Lab
06/21/02 | Neurodegeneration. A glutamine-rich trail leads to transcription factors.
Freiman RN, Tjian R
Science . 2002 Jun 21;296(5576):2149-50. doi: 10.1073/pnas.1100640108
Truman LabRiddiford Lab
03/20/70 | Neuroendocrine control of ecdysis in silkmoths.
Truman JW, Riddiford LM
Science. 1970 Mar 20;167(3925):1624-6. doi: 10.1126/science.167.3925.1624

An adult moth sheds its pupal skin only during a specific period of the day. The brain is necessary for the synchronization of this behavior with the environmental photoperiod. This function is fully preserved when all the brain’s nervous connections are severed or when a "loose" brain is transplanted into the tip of the abdomen. By appropriate experiments it was possible to show that the entire mechanism is brain-centered. The components include a photoreceptor mechanism, a clock, and a neuroendocrine output. The clock-controlled release of the hormone acts on the central nervous system to trigger a species-specific behavior pattern which culminates in ecdysis.

View Publication Page
05/21/19 | Neurogenetic dissection of the lateral horn reveals major outputs, diverse behavioural functions, and interactions with the mushroom body.
Dolan M, Frechter S, Bates AS, Dan C, Huoviala P, Roberts RJ, Schlegel P, Dhawan S, Tabano R, Dionne H, Christoforou C, Close K, Sutcliffe B, Giuliani B, Li F, Costa M, Ihrke G, Meissner GW, Bock DD, Aso Y, Rubin GM, Jefferis GS
Elife. 2019 May 21;8:. doi: 10.7554/eLife.43079

Animals exhibit innate behaviours to a variety of sensory stimuli including olfactory cues. In , one higher olfactory centre, the lateral horn (LH), is implicated in innate behaviour. However, our structural and functional understanding of the LH is scant, in large part due to a lack of sparse neurogenetic tools for this region. We generate a collection of split-GAL4 driver lines providing genetic access to 82 LH cell types. We use these to create an anatomical and neurotransmitter map of the LH and link this to EM connectomics data. We find ~30% of LH projections converge with outputs from the mushroom body, site of olfactory learning and memory. Using optogenetic activation, we identify LH cell types that drive changes in valence behavior or specific locomotor programs. In summary, we have generated a resource for manipulating and mapping LH neurons, providing new insights into the circuit basis of innate and learned olfactory behavior.

View Publication Page
07/01/05 | Neurogeometry and potential synaptic connectivity.
Stepanyants A, Chklovskii DB
Trends in Neurosciences. 2005 Jul;28(7):387-94. doi: 10.1016/j.tins.2005.05.006

The advent of high-quality 3D reconstructions of neuronal arbors has revived the hope of inferring synaptic connectivity from the geometric shapes of axons and dendrites, or ’neurogeometry’. A quantitative description of connectivity must be built on a sound theoretical framework. Here, we review recent developments in neurogeometry that can provide such a framework. We base the geometric description of connectivity on the concept of a ’potential synapse’–the close apposition between axons and dendrites necessary to form an actual synapse. In addition to describing potential synaptic connectivity in neuronal circuits, neurogeometry provides insight into basic features of functional connectivity, such as specificity and plasticity.

View Publication Page
01/04/21 | Neuromolecular and behavioral effects of ethanol deprivation in Drosophila
Natalie M. D’Silva , Katie S. McCullar , Ashley M. Conard , Tyler Blackwater , Reza Azanchi , Ulrike Heberlein , Erica Larschan , Karla R. Kaun
bioRxiv. 2021 Jan 04:. doi: https://doi.org/10.1101/2021.01.02.425101

Alcohol use disorder (AUD) is characterized by loss of control in limiting alcohol intake. This may involve intermittent periods of abstinence followed by alcohol seeking and, consequently, relapse. However, little is understood of the molecular mechanisms underlying the impact of alcohol deprivation on behavior. Using a new Drosophila melanogaster repeated intermittent alcohol exposure model, we sought to identify how ethanol deprivation alters spontaneous behavior, determine the associated neural structures, and reveal correlated changes in brain gene expression. We found that repeated intermittent ethanol-odor exposures followed by ethanol-deprivation dynamically induces behaviors associated with a negative affect state. Although behavioral states broadly mapped to many brain regions, persistent changes in social behaviors mapped to the mushroom body and surrounding neuropil. This occurred concurrently with changes in expression of genes associated with sensory responses, neural plasticity, and immunity. Like social behaviors, immune response genes were upregulated following three-day repeated intermittent ethanol-odor exposures and persisted with one or two days of ethanol-deprivation, suggesting an enduring change in molecular function. Our study provides a framework for identifying how ethanol deprivation alters behavior with correlated underlying circuit and molecular changes.

View Publication Page