Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4108 Publications

Showing 3941-3950 of 4108 results
08/25/23 | Ultra-high density electrodes improve detection, yield, and cell type specificity of brain recordings.
Ye Z, Shelton AM, Shaker JR, Boussard J, Colonell J, Manavi S, Chen S, Windolf C, Hurwitz C, Namima T, Pedraja F, Weiss S, Raducanu B, Ness TV, Einevoll GT, Laurent G, Sawtell NB, Bair W, Pasupathy A, Mora Lopez C, Dutta B, Paninski L, Siegle JH, Koch C, Olsen SR, Harris TD, Steinmetz NA
bioRxiv. 2023 Aug 25:. doi: 10.1101/2023.08.23.554527

To study the neural basis of behavior, we require methods to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology is a principal method for achieving this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To overcome these limitations, we developed a silicon probe with significantly smaller and denser recording sites than previous designs, called Neuropixels Ultra (NP Ultra). This device measures neuronal activity at ultra-high densities (>1300 sites per mm, 10 times higher than previous probes), with 6 µm center-to-center spacing and low noise. This device effectively comprises an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We introduce a new spike sorting algorithm optimized for these probes and use it to find that the yield of visually-responsive neurons in recordings from mouse visual cortex improves ∼3-fold. Recordings across multiple brain regions and four species revealed a subset of unexpectedly small extracellular action potentials not previously reported. Further experiments determined that, in visual cortex, these do not correspond to major subclasses of interneurons and instead likely reflect recordings from axons. Finally, using ground-truth identification of cortical inhibitory cell types with optotagging, we found that cell type was discriminable with approximately 75% success among three types, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, sampling bias, and cell type classification.

View Publication Page
11/08/17 | Ultra-selective looming detection from radial motion opponency.
Klapoetke NC, Nern A, Peek MY, Rogers EM, Breads P, Rubin GM, Reiser MB, Card GM
Nature. 2017 Nov 08;551(7679):237-241. doi: 10.1038/nature24626

Nervous systems combine lower-level sensory signals to detect higher-order stimulus features critical to survival, such as the visual looming motion created by an imminent collision or approaching predator. Looming-sensitive neurons have been identified in diverse animal species. Different large-scale visual features such as looming often share local cues, which means loom-detecting neurons face the challenge of rejecting confounding stimuli. Here we report the discovery of an ultra-selective looming detecting neuron, lobula plate/lobula columnar, type II (LPLC2) in Drosophila, and show how its selectivity is established by radial motion opponency. In the fly visual system, directionally selective small-field neurons called T4 and T5 form a spatial map in the lobula plate, where they each terminate in one of four retinotopic layers, such that each layer responds to motion in a different cardinal direction. Single-cell anatomical analysis reveals that each arm of the LPLC2 cross-shaped primary dendrites ramifies in one of these layers and extends along that layer's preferred motion direction. In vivo calcium imaging demonstrates that, as their shape predicts, individual LPLC2 neurons respond strongly to outward motion emanating from the centre of the neuron's receptive field. Each dendritic arm also receives local inhibitory inputs directionally selective for inward motion opposing the excitation. This radial motion opponency generates a balance of excitation and inhibition that makes LPLC2 non-responsive to related patterns of motion such as contraction, wide-field rotation or luminance change. As a population, LPLC2 neurons densely cover visual space and terminate onto the giant fibre descending neurons, which drive the jump muscle motor neuron to trigger an escape take off. Our findings provide a mechanistic description of the selective feature detection that flies use to discern and escape looming threats.

View Publication Page
Truman Lab
09/11/12 | Ultrabithorax confers spatial identity in a context-specific manner in the Drosophila postembryonic ventral nervous system.
Marin EC, Dry KE, Alaimo DR, Rudd KT, Cillo AR, Clenshaw ME, Negre N, White KP, Truman JW
Neural Development. 2012 Sep 11;7:31. doi: 10.1186/1749-8104-7-31

BACKGROUND: In holometabolous insects such as Drosophila melanogaster, neuroblasts produce an initial population of diverse neurons during embryogenesis and a much larger set of adult-specific neurons during larval life. In the ventral CNS, many of these secondary neuronal lineages differ significantly from one body segment to another, suggesting a role for anteroposterior patterning genes. RESULTS: Here we systematically characterize the expression pattern and function of the Hox gene Ultrabithorax (Ubx) in all 25 postembryonic lineages. We find that Ubx is expressed in a segment-, lineage-, and hemilineage-specific manner in the thoracic and anterior abdominal segments. When Ubx is removed from neuroblasts via mitotic recombination, neurons in these segments exhibit the morphologies and survival patterns of their anterior thoracic counterparts. Conversely, when Ubx is ectopically expressed in anterior thoracic segments, neurons exhibit complementary posterior transformation phenotypes. CONCLUSION: Our findings demonstrate that Ubx plays a critical role in conferring segment-appropriate morphology and survival on individual neurons in the adult-specific ventral CNS. Moreover, while always conferring spatial identity in some sense, Ubx has been co-opted during evolution for distinct and even opposite functions in different neuronal hemilineages.

View Publication Page
09/13/10 | Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing.
Vaziri A, Shank CV
Optics Express. 2010 Sep 13;18(19):19645-55. doi: 10.1364/OE.18.019645

The need for optical sectioning in bio-imaging has amongst others led to the development of the two-photon scanning microscopy. However, this comes with some intrinsic fundamental limitations in the temporal domain as the focused spot has to be scanned mechanically in the sample plane. Hence for a large number of biological applications where imaging speed is a limiting factor, it would be significantly advantageous to generate widefield excitations with an optical sectioning comparable to the two-photon scanning microscopy. Recently by using the technique of temporal focusing it was shown that high axial resolution widefield excitation can be generated in picosecond time scales without any mechanical moving parts. However the achievable axial resolution is still well above that of a two-photon scanning microscope. Here we demonstrate a new ultrafast widefield two-photon imaging technique termed Multifocal Temporal Focusing (MUTEF) which relies on the generation of a set of diffraction limited beams produced by an Echelle grating that scan across a second tilted diffraction grating in picosecond time scale, generating a widefield excitation area with an axial resolution comparable to a two-photon scanning microscope. Using this method we have shown widefield two-photon imaging on fixed biological samples with an axial sectioning with a FWHM of  0.85 μm.

View Publication Page
11/14/18 | Ultralarge modulation of fluorescence by neuromodulators in carbon nanotubes functionalized with self-assembled oligonucleotide rings.
Beyene AG, Alizadehmojarad AA, Dorlhiac G, Goh N, Streets AM, Král P, Vuković L, Landry MP
Nano Letters. 2018 Nov 14;18(11):6995-7003. doi: 10.1021/acs.nanolett.8b02937

Noncovalent interactions between single-stranded DNA (ssDNA) oligonucleotides and single wall carbon nanotubes (SWNTs) have provided a unique class of tunable chemistries for a variety of applications. However, mechanistic insight into both the photophysical and intermolecular phenomena underlying their utility is lacking, which results in obligate heuristic approaches for producing ssDNA-SWNT based technologies. In this work, we present an ultrasensitive "turn-on" nanosensor for neuromodulators dopamine and norepinephrine with strong relative change in fluorescence intensity (Δ F/ F) of up to 3500%, a signal appropriate for in vivo neuroimaging, and uncover the photophysical principles and intermolecular interactions that govern the molecular recognition and fluorescence modulation of this nanosensor synthesized from the spontaneous self-assembly of (GT) ssDNA rings on SWNTs. The fluorescence modulation of the ssDNA-SWNT conjugate is shown to exhibit remarkable sensitivity to the ssDNA sequence chemistry, length, and surface density, providing a set of parameters with which to tune nanosensor dynamic range, analyte selectivity and strength of fluorescence turn-on. We employ classical and quantum mechanical molecular dynamics simulations to rationalize our experimental findings. Calculations show that (GT) ssDNA form ordered rings around (9,4) SWNTs, inducing periodic surface potentials that modulate exciton recombination lifetimes. Further evidence is presented to elucidate how dopamine analyte binding modulates SWNT fluorescence. We discuss the implications of our findings for SWNT-based molecular imaging applications.

View Publication Page
03/14/19 | Ultrapotent chemogenetics for research and potential clinical applications.
Magnus CJ, Lee PH, Bonaventura J, Zemla R, Gomez JL, Ramirez MH, Hu X, Galvan A, Basu J, Michaelides M, Sternson SM
Science. 2019 Mar 14;364(6436):eaav5282. doi: 10.1126/science.aav5282

Chemogenetics enables non-invasive chemical control over cell populations in behaving animals. However, existing small molecule agonists show insufficient potency or selectivity. There is also need for chemogenetic systems compatible with both research and human therapeutic applications. We developed a new ion channel-based platform for cell activation and silencing that is controlled by low doses of the anti-smoking drug varenicline. We then synthesized novel sub-nanomolar potency agonists, called uPSEMs, with high selectivity for the chemogenetic receptors. uPSEMs and their receptors were characterized in brains of mice and a rhesus monkey by in vivo electrophysiology, calcium imaging, positron emission tomography, behavioral efficacy testing, and receptor counterscreening. This platform of receptors and selective ultrapotent agonists enables potential research and clinical applications of chemogenetics.

View Publication Page
Jayaraman LabLooger LabSvoboda LabSchreiter LabGENIE
07/18/13 | Ultrasensitive fluorescent proteins for imaging neuronal activity.
Chen T, Wardill TJ, Sun Y, Pulvar SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS
Nature. 2013 Jul 18;499:295-300. doi: 10.1038/nature12354

Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5–40-µm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.

View Publication Page
Chklovskii Lab
09/23/10 | Ultrastructural analysis of hippocampal neuropil from the connectomics perspective.
Mishchenko Y, Hu T, Spacek J, Mendenhall J, Harris KM, Chklovskii DB
Neuron. 2010 Sep 23;67(6):1009-20. doi: 10.1371/journal.pcbi.1001066

Complete reconstructions of vertebrate neuronal circuits on the synaptic level require new approaches. Here, serial section transmission electron microscopy was automated to densely reconstruct four volumes, totaling 670 μm(3), from the rat hippocampus as proving grounds to determine when axo-dendritic proximities predict synapses. First, in contrast with Peters’ rule, the density of axons within reach of dendritic spines did not predict synaptic density along dendrites because the fraction of axons making synapses was variable. Second, an axo-dendritic touch did not predict a synapse; nevertheless, the density of synapses along a hippocampal dendrite appeared to be a universal fraction, 0.2, of the density of touches. Finally, the largest touch between an axonal bouton and spine indicated the site of actual synapses with about 80% precision but would miss about half of all synapses. Thus, it will be difficult to predict synaptic connectivity using data sets missing ultrastructural details that distinguish between axo-dendritic touches and bona fide synapses.

View Publication Page
05/13/24 | Ultrastructural differences impact cilia shape and external exposure across cell classes in the visual cortex
Ott CM, Torres R, Kuan T, Kuan A, Buchanan J, Elabbady L, Seshamani S, Bodor AL, Collman F, Bock DD, Lee WC, da Costa NM, Lippincott-Schwartz J
Curr Biol. 2024 May 13:. doi: 10.1016/j.cub.2024.04.043

A primary cilium is a membrane-bound extension from the cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. Primary cilia in the brain are less accessible than cilia on cultured cells or epithelial tissues because in the brain they protrude into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) but were absent from oligodendrocytes and microglia. Ultrastructural comparisons revealed that the base of the cilium and the microtubule organization differed between neurons and glia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting that cilia are poised to encounter locally released signaling molecules. Our analysis indicated that synapse proximity is likely due to random encounters in the neuropil, with no evidence that cilia modulate synapse activity as would be expected in tetrapartite synapses. The observed cell class differences in proximity to synapses were largely due to differences in external cilia length. Many key structural features that differed between neuronal and glial cilia influenced both cilium placement and shape and, thus, exposure to processes and synapses outside the cilium. Together, the ultrastructure both within and around neuronal and glial cilia suggest differences in cilia formation and function across cell types in the brain.

View Publication Page
05/01/20 | Ultrastructural visualization of 3D chromatin folding using volume electron microscopy and DNA in situ hybridization.
Trzaskoma P, Ruszczycki B, Lee B, Pels KK, Krawczyk K, Bokota G, Szczepankiewicz AA, Aaron J, Walczak A, Śliwińska MA, Magalska A, Kadlof M, Wolny A, Parteka Z, Arabasz S, Kiss-Arabasz M, Plewczyński D, Ruan Y, Wilczyński GM
Nature Communications. 2020 May 01;11(1):2120. doi: 10.1038/s41467-020-15987-2

The human genome is extensively folded into 3-dimensional organization. However, the detailed 3D chromatin folding structures have not been fully visualized due to the lack of robust and ultra-resolution imaging capability. Here, we report the development of an electron microscopy method that combines serial block-face scanning electron microscopy with in situ hybridization (3D-EMISH) to visualize 3D chromatin folding at targeted genomic regions with ultra-resolution (5 × 5 × 30 nm in xyz dimensions) that is superior to the current super-resolution by fluorescence light microscopy. We apply 3D-EMISH to human lymphoblastoid cells at a 1.7 Mb segment of the genome and visualize a large number of distinctive 3D chromatin folding structures in ultra-resolution. We further quantitatively characterize the reconstituted chromatin folding structures by identifying sub-domains, and uncover a high level heterogeneity of chromatin folding ultrastructures in individual nuclei, suggestive of extensive dynamic fluidity in 3D chromatin states.

View Publication Page