Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Hantman Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4108 Publications

Showing 3961-3970 of 4108 results
05/13/25 | Unlocking in vivo metabolic insights with vibrational microscopy.
Chen T, Savini M, Wang MC
Nat Methods. 2025 May 13;22(5):886-889. doi: 10.1038/s41592-025-02616-3
05/13/25 | Unlocking in vivo metabolic insights with vibrational microscopy.
Chen T, Savini M, Wang MC
Nat Methods. 2025 May 13;22(5):886-889. doi: 10.1038/s41592-025-02616-3

No abstract available.

View Publication Page
04/01/18 | Unnecessary tension.
Cox JD, Seltzer MJ
Lab Animal. 2018 Apr;47(4):91. doi: 10.1038/s41684-018-0024-9
05/17/17 | Unraveling cell-to-cell signaling networks with chemical biology.
Gartner ZJ, Prescher JA, Lavis LD
Nature Chemical Biology. 2017 May 17;13(6):564-568. doi: 10.1038/nchembio.2391
12/11/21 | Unraveling Single-Particle Trajectories Confined in Tubular Networks
Yunhao Sun , Zexi Yu , Christopher Obara , Keshav Mittal , Jennifer Lippincott-Schwarz , Elena F Koslover
arXiv. 2021 Dec 11:

The analysis of single particle trajectories plays an important role in elucidating dynamics within complex environments such as those found in living cells. However, the characterization of intracellular particle motion is often confounded by confinement of the particles within non-trivial subcellular geometries. Here, we focus specifically on the case of particles undergoing Brownian motion within a tubular network, as found in some cellular organelles. An unraveling algorithm is developed to uncouple particle motion from the confining network structure, allowing for an accurate extraction of the diffusion coefficient, as well as differentiating between Brownian and fractional Brownian dynamics. We validate the algorithm with simulated trajectories and then highlight its application to an example system: analyzing the motion of membrane proteins confined in the tubules of the peripheral endoplasmic reticulum in mammalian cells. We show that these proteins undergo diffusive motion with a well-characterized diffusivity. Our algorithm provides a generally applicable approach for disentangling geometric morphology and particle dynamics in networked architectures.

View Publication Page
01/01/07 | Unsupervised discovery of action hierarchies in large collections of activity videos.
Ahammad P, Yeo C, Ramchandran K, Sastry S
IEEE International Workshop on Multimedia Signal Processing . 2007:

Given a large collection of videos containing activities, we investigate the problem of organizing it in an unsupervised fashion into a hierarchy based on the similarity of actions embedded in the videos. We use spatio-temporal volumes of filtered motion vectors to compute appearance-invariant action similarity measures efficiently - and use these similarity measures in hierarchical agglomerative clustering to organize videos into a hierarchy such that neighboring nodes contain similar actions. This naturally leads to a simple automatic scheme for selecting videos of representative actions (exemplars) from the database and for efficiently indexing the whole database. We compute a performance metric on the hierarchical structure to evaluate goodness of the estimated hierarchy, and show that this metric has potential for predicting the clustering performance of various joining criteria used in building hierarchies. Our results show that perceptually meaningful hierarchies can be constructed based on action similarities with minimal user supervision, while providing favorable clustering performance and retrieval performance.

View Publication Page
09/04/06 | Unsupervised learning of boosted tree classifier using graph cuts for hand pose recognition.
Parag T, Elgammal A
British Machine Vision Conference. 2006 Sep 4:
10/01/23 | Unsupervised Learning of Object-Centric Embeddings for Cell Instance Segmentation in Microscopy Images
Wolf S, Lalit M, McDole K, Funke J
2023 IEEE/CVF International Conference on Computer Vision (ICCV). 2023 Oct 01:. doi: 10.1109/ICCV51070.2023.01944

Segmentation of objects in microscopy images is required for many biomedical applications. We introduce object-centric embeddings (OCEs), which embed image patches such that the spatial offsets between patches cropped from the same object are preserved. Those learnt embeddings can be used to delineate individual objects and thus obtain instance segmentations. Here, we show theoretically that, under assumptions commonly found in microscopy images, OCEs can be learnt through a self-supervised task that predicts the spatial offset between image patches. Together, this forms an unsupervised cell instance segmentation method which we evaluate on nine diverse large-scale microscopy datasets. Segmentations obtained with our method lead to substantially improved results, compared to state-of-the-art baselines on six out of nine datasets, and perform on par on the remaining three datasets. If ground-truth annotations are available, our method serves as an excellent starting point for supervised training, reducing the required amount of ground-truth needed by one order of magnitude, thus substantially increasing the practical applicability of our method. Source code is available at github.com/funkelab/cellulus.

View Publication Page
06/18/25 | Unsupervised pretraining in biological neural networks
Lin Zhong , Scott Baptista , Rachel Gattoni , Jon Arnold , Daniel Flickinger , Carsen Stringer , Marius Pachitariu
Nature. 2025 Jun 18:. doi: 10.1038/s41586-025-09180-y

Representation learning in neural networks may be implemented with supervised or unsupervised algorithms, distinguished by the availability of instruction. In the sensory cortex, perceptual learning drives neural plasticity1-13, but it is not known whether this is due to supervised or unsupervised learning. Here we recorded populations of up to 90,000 neurons simultaneously from the primary visual cortex (V1) and higher visual areas (HVAs) while mice learned multiple tasks, as well as during unrewarded exposure to the same stimuli. Similar to previous studies, we found that neural changes in task mice were correlated with their behavioural learning. However, the neural changes were mostly replicated in mice with unrewarded exposure, suggesting that the changes were in fact due to unsupervised learning. The neural plasticity was highest in the medial HVAs and obeyed visual, rather than spatial, learning rules. In task mice only, we found a ramping reward-prediction signal in anterior HVAs, potentially involved in supervised learning. Our neural results predict that unsupervised learning may accelerate subsequent task learning, a prediction that we validated with behavioural experiments.

 

Preprint: https://www.biorxiv.org/content/early/2024/02/27/2024.02.25.581990

View Publication Page
10/04/13 | Unsupervised segmentation of noisy electron microscopy images using salient watersheds and region merging.
Navlakha S, Ahammad P, Myers EW, Myers EW
BMC Bioinformatics. 2013 Oct 4;14:294. doi: 10.1186/1471-2105-14-294

Background: Segmenting electron microscopy (EM) images of cellular and subcellular processes in the nervous system is a key step in many bioimaging pipelines involving classification and labeling of ultrastructures. However, fully automated techniques to segment images are often susceptible to noise and heterogeneity in EM images (e.g. different histological preparations, different organisms, different brain regions, etc.). Supervised techniques to address this problem are often helpful but require large sets of training data, which are often difficult to obtain in practice, especially across many conditions. Results: We propose a new, principled unsupervised algorithm to segment EM images using a two-step approach: edge detection via salient watersheds following by robust region merging. We performed experiments to gather EM neuroimages of two organisms (mouse and fruit fly) using different histological preparations and generated manually curated ground-truth segmentations. We compared our algorithm against several state-of- the-art unsupervised segmentation algorithms and found superior performance using two standard measures of under-and over-segmentation error. Conclusions: Our algorithm is general and may be applicable to other large-scale segmentation problems for bioimages.

View Publication Page