Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Huston Lab / Publications
general_search_page-panel_pane_1 | views_panes

91 Publications

Showing 61-70 of 91 results
Your Criteria:
    Gonen Lab
    09/10/08 | Noncanonical binding of calmodulin to aquaporin-0: implications for channel regulation.
    Reichow SL, Gonen T
    Structure. 2008 Sep 10;16(9):1389-98. doi: 10.1016/j.str.2008.06.011

    Aquaporins (AQPs) are a family of ubiquitous membrane channels that conduct water across cell membranes. AQPs form homotetramers containing four functional and independent water pores. Aquaporin-0 (AQP0) is expressed in the eye lens, where its water permeability is regulated by calmodulin (CaM). Here we use a combination of biochemical methods and NMR spectroscopy to probe the interaction between AQP0 and CaM. We show that CaM binds the AQP0 C-terminal domain in a calcium-dependent manner. We demonstrate that only two CaM molecules bind a single AQP0 tetramer in a noncanonical fashion, suggesting a form of cooperativity between AQP0 monomers. Based on these results, we derive a structural model of the AQP0/CaM complex, which suggests CaM may be inhibitory to channel permeability by capping the vestibules of two monomers within the AQP0 tetramer. Finally, phosphorylation within AQP0's CaM binding domain inhibits the AQP0/CaM interaction, suggesting a temporal regulatory mechanism for complex formation.

    View Publication Page
    Gonen Lab
    04/02/13 | Overview of electron crystallography of membrane proteins: crystallization and screening strategies using negative stain electron microscopy.
    Nannenga BL, Iadanza MG, Vollmar BS, Gonen T
    Current Protocols in Protein Science . 2013 Apr 2;Chapter 17:Unit 17.15. doi: 10.1002/0471140864.ps1715s72

    Electron cryomicroscopy, or cryoEM, is an emerging technique for studying the three-dimensional structures of proteins and large macromolecular machines. Electron crystallography is a branch of cryoEM in which structures of proteins can be studied at resolutions that rival those achieved by X-ray crystallography. Electron crystallography employs two-dimensional crystals of a membrane protein embedded within a lipid bilayer. The key to a successful electron crystallographic experiment is the crystallization, or reconstitution, of the protein of interest. This unit describes ways in which protein can be expressed, purified, and reconstituted into well-ordered two-dimensional crystals. A protocol is also provided for negative stain electron microscopy as a tool for screening crystallization trials. When large and well-ordered crystals are obtained, the structures of both protein and its surrounding membrane can be determined to atomic resolution.

    View Publication Page
    Gonen Lab
    01/01/13 | Phasing electron diffraction data by molecular replacement: strategy for structure determination and refinement.
    Wisedchaisri G, Gonen T
    Methods in Molecular Biology. 2013;955:243-72. doi: 10.1007/978-1-62703-176-9_14

    Electron crystallography is arguably the only electron cryomicroscopy (cryo EM) technique able to deliver atomic resolution data (better then 3 Å) for membrane proteins embedded in a membrane. The progress in hardware improvements and sample preparation for diffraction analysis resulted in a number of recent examples where increasingly higher resolutions were achieved. Other chapters in this book detail the improvements in hardware and delve into the intricate art of sample preparation for microscopy and electron diffraction data collection and processing. In this chapter, we describe in detail the protocols for molecular replacement for electron diffraction studies. The use of a search model for phasing electron diffraction data essentially eliminates the need of acquiring image data rendering it immune to aberrations from drift and charging effects that effectively lower the attainable resolution.

    View Publication Page
    Gonen Lab
    02/15/08 | Polymorphic assemblies and crystalline arrays of lens tetraspanin MP20.
    Gonen T, Hite RK, Cheng Y, Petre BM, Kistler J, Walz T
    Journal of Molecular Biology. 2008 Feb 15;376(2):380-92. doi: 10.1016/j.jmb.2007.09.001

    Members of the tetraspanin superfamily function as transmembrane scaffold proteins that mediate the assembly of membrane proteins into specific signaling complexes. Tetraspanins also interact with each other and concentrate membrane proteins into tetraspanin-enriched microdomains (TEMs). Here we report that lens-specific tetraspanin MP20 can form multiple types of higher-order assemblies and we present crystalline arrays of MP20. When isolated in the absence of divalent cations, MP20 is solubilized predominantly in tetrameric form, whereas the presence of divalent cations during solubilization promotes the association of MP20 tetramers into higher-order species. This effect only occurs when divalent cations are present during solubilization but not when divalent cations are added to solubilized tetrameric MP20, suggesting that other factors may also be involved. When purified MP20 tetramers are reconstituted with native lens lipids in the presence of magnesium, MP20 forms two-dimensional (2D) crystals. A projection map at 18 A resolution calculated from negatively stained 2D crystals showed that the building block of the crystal is an octamer consisting of two tetramers related to each other by 2-fold symmetry. In addition to 2D crystals, reconstitution of MP20 with native lipids also produced a variety of large protein-lipid complexes, and we present three-dimensional (3D) reconstructions of the four most abundant of these complexes in negative stain. The various complexes formed by MP20 most likely reflect the many ways in which tetraspanins can interact with each other to allow formation of TEMs.

    View Publication Page
    Gonen Lab
    03/16/07 | Projection map of aquaporin-9 at 7 A resolution.
    Viadiu H, Gonen T, Walz T
    Journal of Molecular Biology. 2007 Mar 16;367(1):80-8. doi: 10.1016/j.jmb.2006.12.042

    Aquaporin-9, an aquaglyceroporin present in diverse tissues, is unique among aquaporins because it is not only permeable to water, urea and glycerol, but also allows passage of larger uncharged solutes. Single particle analysis of negatively stained recombinant rat aquaporin-9 revealed a particle size characteristic of the tetrameric organization of all members of the aquaporin family. Reconstitution of aquaporin-9 into two-dimensional crystals enabled us to calculate a projection map at 7 A resolution. The projection structure indicates a tetrameric structure, similar to GlpF, with each square-like monomer forming a pore. A comparison of the pore-lining residues between the crystal structure of GlpF and a homology model of aquaporin-9 locates substitutions in these residues predominantly to the hydrophobic edge of the tripathic pore of GlpF, providing first insights into the structural basis for the broader substrate specificity of aquaporin-9.

    View Publication Page
    Gonen Lab
    04/04/14 | Protein structure determination by MicroED.
    Nannenga BL, Gonen T
    Current Opinion in Structural Biology. 2014 Apr 4;27C:24-31. doi: 10.1016/j.sbi.2014.03.004

    In this review we discuss the current advances relating to structure determination from protein microcrystals with special emphasis on the newly developed method called MicroED. This method uses a transmission electron cryo-microscope to collect electron diffraction data from extremely small 3-dimensional (3D) crystals. MicroED has been used to solve the 3D structure of the model protein lysozyme to 2.9A resolution. As the method further matures, MicroED promises to offer a unique and widely applicable approach to protein crystallography using nanocrystals.

    View Publication Page
    Gonen Lab
    08/04/14 | Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE.
    Wisedchaisri G, Park M, Iadanza MG, Zheng H, Gonen T
    Nature Communication. 2014 - Aug;5:4521. doi: 10.1038/ncomms5521

    The major facilitator superfamily (MFS) is the largest collection of structurally related membrane proteins that transport a wide array of substrates. The proton-coupled sugar transporter XylE is the first member of the MFS that has been structurally characterized in multiple transporting conformations, including both the outward and inward-facing states. Here we report the crystal structure of XylE in a new inward-facing open conformation, allowing us to visualize the rocker-switch movement of the N-domain against the C-domain during the transport cycle. Using molecular dynamics simulation, and functional transport assays, we describe the movement of XylE that facilitates sugar translocation across a lipid membrane and identify the likely candidate proton-coupling residues as the conserved Asp27 and Arg133. This study addresses the structural basis for proton-coupled substrate transport and release mechanism for the sugar porter family of proteins.

    View Publication Page
    Gonen Lab
    08/01/12 | Recent progress in membrane protein structures and investigation methods.
    Gonen T, Waksman G
    Current Opinion in Structural Biology. 2012 Aug;22(4):467-8. doi: 10.1016/j.sbi.2012.07.002
    Gonen Lab
    08/01/11 | Secretins: dynamic channels for protein transport across membranes.
    Korotkov KV, Gonen T, Hol WG
    Trends in Biochemical Sciences. 2011 Aug;36(8):433-43. doi: 10.1016/j.tibs.2011.04.002

    Secretins form megadalton bacterial-membrane channels in at least four sophisticated multiprotein systems that are crucial for translocation of proteins and assembled fibers across the outer membrane of many species of bacteria. Secretin subunits contain multiple domains, which interact with numerous other proteins, including pilotins, secretion-system partner proteins, and exoproteins. Our understanding of the structure of secretins is rapidly progressing, and it is now recognized that features common to all secretins include a cylindrical arrangement of 12-15 subunits, a large periplasmic vestibule with a wide opening at one end and a periplasmic gate at the other. Secretins might also play a key role in the biogenesis of their cognate secretion systems.

    View Publication Page
    Gonen Lab
    01/18/19 | Structural basis for substrate binding and specificity of a sodium-alanine symporter AgcS.
    Ma J, Lei H, Reyes FE, Sanchez-Martinez S, Sarhan MF, Hattne J, Gonen T
    Proceedings of the National Academy of Sciences of the United States of America. 2019 Jan 18;116(6):2086-90. doi: 10.1073/pnas.1806206116

    The amino acid, polyamine, and organocation (APC) superfamily is the second largest superfamily of membrane proteins forming secondary transporters that move a range of organic molecules across the cell membrane. Each transporter in the APC superfamily is specific for a unique subset of substrates, even if they possess a similar structural fold. The mechanism of substrate selectivity remains, by and large, elusive. Here, we report two crystal structures of an APC member from , the alanine or glycine:cation symporter (AgcS), with l- or d-alanine bound. Structural analysis combined with site-directed mutagenesis and functional studies inform on substrate binding, specificity, and modulation of the AgcS family and reveal key structural features that allow this transporter to accommodate glycine and alanine while excluding all other amino acids. Mutation of key residues in the substrate binding site expand the selectivity to include valine and leucine. These studies provide initial insights into substrate selectivity in AgcS symporters.

    View Publication Page