Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Huston Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4097 Publications

Showing 661-670 of 4097 results
04/11/24 | Blue-shifted genetically encoded Ca2+ indicator with enhanced two-photon absorption
Abhi Aggarwal , Smrithi Sunil , Imane Bendifallah , Michael Moon , Mikhail Drobizhev , Landon Zarowny , Jihong Zheng , Sheng-Yi Wu , Alexander W. Lohman , Alison G. Tebo , Valentina Emiliani , Kaspar Podgorski , Yi Shen , Robert E. Campbell
Neurophotonics. 2024 Apr 11:. doi: 10.1117/1.NPh.11.2.024207

Significance: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy.

Aim: We describe the development and applications of T-GECO1-a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1.

Approach: We use protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices.

Results: The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300M−1cm−1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold, and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled the detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant.

Conclusions: T-GECO1 is a high-performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.

Keywords: blue-shifted fluorescence; genetically encoded calcium ion indicator; neuronal activity imaging; protein engineering; two-photon excitation.

View Publication Page
04/01/03 | Body-size control: how an insect knows it has grown enough.
Stern D
Curr Biol. 2003 Apr 1;13(7):R267-9

Insulin signaling controls organ growth and final body size in insects. Recent results have begun to clarify how insulin signaling drives organ growth to match nutrient levels, but have not yet elucidated how insulin signaling controls final body size.

View Publication Page
11/13/01 | Body-size evolution: how to evolve a mammoth moth.
Stern D
Curr Biol. 2001 Nov 13;11(22):R917-9

Separate recent studies have revealed the physiological changes underlying the evolution of body size in an insect and advanced our understanding of the genetics of insect growth. These studies highlight the gulf between physiological and genetic studies of growth control and the exciting opportunities for unification of these fields.

View Publication Page
02/23/12 | Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain.
Larochelle A, Gillette JM, Desmond R, Ichwan B, Cantilena A, Cerf A, Barrett AJ, Wayne AS, Lippincott-Schwartz J, Dunbar CE
Blood. 2012 Feb 23;119(8):1848-55. doi: 10.1182/blood-2011-08-371583

Manipulation of hematopoietic stem/progenitor cells (HSPCs) ex vivo is of clinical importance for stem cell expansion and gene therapy applications. However, most cultured HSPCs are actively cycling, and show a homing and engraftment defect compared with the predominantly quiescent noncultured HSPCs. We previously showed that HSPCs make contact with osteoblasts in vitro via a polarized membrane domain enriched in adhesion molecules such as tetraspanins. Here we show that increased cell cycling during ex vivo culture of HSPCs resulted in disruption of this membrane domain, as evidenced by disruption of polarity of the tetraspanin CD82. Chemical disruption or antibody-mediated blocking of CD82 on noncultured HSPCs resulted in decreased stromal cell adhesion, homing, and engraftment in nonobese diabetic/severe combined immunodeficiency IL-2γ(null) (NSG) mice compared with HSPCs with an intact domain. Most leukemic blasts were actively cycling and correspondingly displayed a loss of domain polarity and decreased homing in NSG mice compared with normal HSPCs. We conclude that quiescent cells, unlike actively cycling cells, display a polarized membrane domain enriched in tetraspanins that mediates homing and engraftment, providing a mechanistic explanation for the homing/engraftment defect of cycling cells and a potential new therapeutic target to enhance engraftment.

View Publication Page
02/23/11 | Bone marrow homing and engraftment of human hematopoietic stem and progenitor cells is mediated by a polarized membrane domain.
Larochelle A, Gillette JM, Desmond R, Ichwan B, Cantilena A, Cerf A, Barrett AJ, Wayne AS, Lippincott-Schwartz J, Dunbar CE
Blood. 2012 Feb 23;119(8):1848-55. doi: 10.1182/blood-2011-08-371583

Manipulation of hematopoietic stem/progenitor cells (HSPCs) ex vivo is of clinical importance for stem cell expansion and gene therapy applications. However, most cultured HSPCs are actively cycling, and show a homing and engraftment defect compared with the predominantly quiescent noncultured HSPCs. We previously showed that HSPCs make contact with osteoblasts in vitro via a polarized membrane domain enriched in adhesion molecules such as tetraspanins. Here we show that increased cell cycling during ex vivo culture of HSPCs resulted in disruption of this membrane domain, as evidenced by disruption of polarity of the tetraspanin CD82. Chemical disruption or antibody-mediated blocking of CD82 on noncultured HSPCs resulted in decreased stromal cell adhesion, homing, and engraftment in nonobese diabetic/severe combined immunodeficiency IL-2γ(null) (NSG) mice compared with HSPCs with an intact domain. Most leukemic blasts were actively cycling and correspondingly displayed a loss of domain polarity and decreased homing in NSG mice compared with normal HSPCs. We conclude that quiescent cells, unlike actively cycling cells, display a polarized membrane domain enriched in tetraspanins that mediates homing and engraftment, providing a mechanistic explanation for the homing/engraftment defect of cycling cells and a potential new therapeutic target to enhance engraftment.

View Publication Page
12/01/14 | Bone-free: soft mechanics for adaptive locomotion.
Trimmer BA, Lin H
Integrative and Comparative Biology. 2014 Dec;54(6):1122-35. doi: 10.1093/icb/icu076

Muscular hydrostats (such as mollusks), and fluid-filled animals (such as annelids), can exploit their constant-volume tissues to transfer forces and displacements in predictable ways, much as articulated animals use hinges and levers. Although larval insects contain pressurized fluids, they also have internal air tubes that are compressible and, as a result, they have more uncontrolled degrees of freedom. Therefore, the mechanisms by which larval insects control their movements are expected to reveal useful strategies for designing soft biomimetic robots. Using caterpillars as a tractable model system, it is now possible to identify the biomechanical and neural strategies for controlling movements in such highly deformable animals. For example, the tobacco hornworm, Manduca sexta, can stiffen its body by increasing muscular tension (and therefore body pressure) but the internal cavity (hemocoel) is not iso-barometric, nor is pressure used to directly control the movements of its limbs. Instead, fluid and tissues flow within the hemocoel and the body is soft and flexible to conform to the substrate. Even the gut contributes to the biomechanics of locomotion; it is decoupled from the movements of the body wall and slides forward within the body cavity at the start of each step. During crawling the body is kept in tension for part of the stride and compressive forces are exerted on the substrate along the axis of the caterpillar, thereby using the environment as a skeleton. The timing of muscular activity suggests that crawling is coordinated by proleg-retractor motoneurons and that the large segmental muscles produce anterograde waves of lifting that do not require precise timing. This strategy produces a robust form of locomotion in which the kinematics changes little with orientation. In different species of caterpillar, the presence of prolegs on particular body segments is related to alternative kinematics such as "inching." This suggests a mechanism for the evolution of different gaits through changes in the usage of prolegs, rather than, through extensive alterations in the motor program controlling the body wall. Some of these findings are being used to design and test novel control-strategies for highly deformable robots. These "softworm" devices are providing new insights into the challenges faced by any soft animal navigating in a terrestrial environment.

View Publication Page
06/28/08 | Boosting adaptive linear weak classifiers for online learning and tracking.
Parag T, Porikli F, Elgammal A
IEEE Conference on Computer Vision and Pattern Recognition. 2008 Jun 28:
11/01/06 | Boundary enhancement and speckle reduction for ultrasound images via salient structure extraction.
Xie J, Jiang Y, Tsui H, Heng P
IEEE Transactions on Bio-Medical Engineering. 2006 Nov;53(11):2300-9. doi: 10.1109/TBME.2006.878088

In this paper, we present an approach for medical ultrasound (US) image enhancement. It is based on a novel perceptual saliency measure which favors smooth, long curves with constant curvature. The perceptual salient boundaries of tissues in US images are enhanced by computing the saliency of directional vectors in the image space, via a local searching algorithm. Our measure is generally determined by curvature changes, intensity gradient and the interaction of neighboring vectors. To restrain speckle noise during the enhancement process, an adaptive speckle suspension term is also combined into the proposed saliency measure. The results obtained on both simulated images and medical US data reveal superior performance of the novel approach over a number of commonly used speckle filters. Applications of US image segmentation show that although the proposed algorithm cannot remove the speckle noise completely and may discard weak anatomical structures in some case, it still provides a considerable gain to US image processing for computer-aided diagnosis.

View Publication Page
01/01/10 | Boundary learning by optimization with topological constraints.
Jain V, Bollmann B, Richardson M, Berger DR, Helmstaedter MN, Briggman KL, Denk W, Bowden JB, Mendenhall JM, Abraham WC, Harris KM, Kasthuri N, Hayworth KJ, Schalek R, Tapia JC, Lichtman JW, Seung HS
IEEE Conference on Computer Vision and Pattern Recognition. 2010:

Recent studies have shown that machine learning can improve the accuracy of detecting object boundaries in images. In the standard approach, a boundary detector is trained by minimizing its pixel-level disagreement with human boundary tracings. This naive metric is problematic because it is overly sensitive to boundary locations. This problem is solved by metrics provided with the Berkeley Segmentation Dataset, but these can be insensitive to topological differences, such as gaps in boundaries. Furthermore, the Berkeley metrics have not been useful as cost functions for supervised learning. Using concepts from digital topology, we propose a new metric called the warping error that tolerates disagreements over boundary location, penalizes topological disagreements, and can be used directly as a cost function for learning boundary detection, in a method that we call Boundary Learning by Optimization with Topological Constraints (BLOTC). We trained boundary detectors on electron microscopic images of neurons, using both BLOTC and standard training. BLOTC produced substantially better performance on a 1.2 million pixel test set, as measured by both the warping error and the Rand index evaluated on segmentations generated from the boundary labelings. We also find our approach yields significantly better segmentation performance than either gPb-OWT-UCM or multiscale normalized cut, as well as Boosted Edge Learning trained directly on our data.

View Publication Page
02/13/25 | BPS2025 - Local cytoplasmic tradewinds direct soluble proteins to their targets
Galbraith CG, English BP, Boehm U, Galbraith J
Biophysical Journal. 2025 Feb 13;124(3):375a - 376a. doi: 10.1016/j.bpj.2024.11.2032

Inside the cell, proteins essential for signaling, morphogenesis, and migration navigate the complex, ever-changing environment through vesicular trafficking or microtubule-driven mechanisms. However, the mechanisms by which soluble proteins reach their target destinations remain unknown. Here, we show that soluble proteins are directed toward the cell’s advancing edge by advection, diffusion facilitated by fluid flow. The advective transport mechanism operates in a compartment at the front of the cell isolated from the rest of the cytoplasm by a semi-permeable actin-myosin barrier that restricts protein mixing between the compartment and the rest of the cytoplasm. Contraction at the barrier generates a molecularly non-specific fluid flow that propels treadmilling actin monomer, actin-binding, adhesion, and even inert proteins forward. Changes in the dynamic local curvature of the barrier direct the flow, targeting proteins toward the protruding regions of the leading edge, effectively coordinating the distribution of proteins needed for local changes in cellular dynamics. Outside the compartment, diffusion is the primary mode of soluble protein transport. Our findings suggest that cells possess previously unrecognized organizational strategies for managing soluble protein concentration and distributing them efficiently for activities such as protrusion and adhesion.

View Publication Page