Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Jan Funke Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4087 Publications

Showing 2361-2370 of 4087 results
07/15/08 | Molecular characterization of pea aphid facultative parthenogenesis
Dayalan G. Srinivasan , Greg K. Davis , David L. Stern
Developmental Biology. 07/2008;319(2):494-495. doi: 10.1016/j.ydbio.2008.05.098

Meiosis is a highly conserved process in which a diploid genome is recombined and assorted into haploid gametes. Remarkably, the pea aphid Acyrthosiphon pisum exhibits a reproductive polyphenism whereby environmental signals trigger a switch between apomixis (parthenogenetic reproduction) and meiosis (sexual reproduction). Aphid apomixis results in daughter embryo clones with 2n genome content without male contribution or recombination. This important adaptation allows aphid populations to not only rapidly expand upon abundant resources during summer but also survive winter. How aphids have evolved this ability to switch between parthenogenesis and sexual meiosis is unknown. To arrive at a mechanistic explanation for this developmental plasticity, I determined meiosis gene activity in sexuals and asexuals. I first identified homologs of a core set of meiosis genes from the pea aphid genome. Next, I tested the expression of these core meiosis genes by PCR spanning across at least one intron from cDNA isolated from asexual and sexual ovaries. Surprisingly, meiosis specific genes (e.g., Spo11, Msh4, Msh5, Hop2 and Mnd1) are expressed in asexual ovaries. Additionally, the Spo11 PCR product contained intronic sequence, thus representing unspliced mRNA. Future experiments looking at the quantities and localizations of mRNA and protein will help to distinguish among several possible explanations for these results. Further molecular characterization of this phenotypic plasticity will be helpful in understanding how multiple interacting pathways can evolve to create alternate developmental phenotypes.

View Publication Page
07/22/21 | Molecular characterization of projection neuron subtypes in the mouse olfactory bulb.
Zeppilli S, Ackels T, Attey R, Klimpert N, Kimberly Ritola D, Boeing S, Crombach A, Schaefer AT, Fleischmann A
eLife. 2021 Jul 22;10:. doi: 10.7554/eLife.65445

Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data, and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.

View Publication Page
04/01/89 | Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction.
Montell C, Rubin GM
Neuron. 1989 Apr;2(4):1313-23. doi: 10.1186/gb-2007-8-7-r145

Recent studies suggest that the fly uses the inositol lipid signaling system for visual excitation and that the Drosophila transient receptor potential (trp) mutation disrupts this process subsequent to the production of IP3. In this paper, we show that trp encodes a novel 1275 amino acid protein with eight putative transmembrane segments. Immunolocalization indicates that the trp protein is expressed predominantly in the rhabdomeric membranes of the photoreceptor cells.

View Publication Page
01/16/25 | Molecular Determinants of Optical Modulation in ssDNA–Carbon Nanotube Biosensors
Krasley AT, Chakraborty S, Vuković L, Beyene AG
ACS Nano. 01/2025:. doi: 10.1021/acsnano.4c13814

Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA–SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood. In this study, we combine experimental and computational approaches to show that ligand binding alone is not sufficient for optical modulation in this class of synthetic biosensors. Instead, the optical response that occurs after ligand binding is highly dependent on the chemical properties of the ligands, resembling mechanisms seen in activity-based biosensors. Specifically, we show that in ssDNA–SWCNT catecholamine sensors, the optical response correlates positively with the electron density on the aryl motif, even among ligands with similar ligand binding affinities. Importantly, despite the strong correlations with electrochemical properties, we find that catechol oxidation itself is not necessary to drive the sensor optical response. We discuss how these findings could serve as a framework for tuning the performance of existing sensors and guiding the development of new biosensors of this class.

View Publication Page
01/01/12 | Molecular diversity of Dscam and self-recognition.
Shi L, Lee T
Advances in Experimental Medicine and Biology. 2012;739:262-75. doi: 10.1007/978-1-4614-1704-0_17

Cell recognition requires interactions through molecules located on cell surface. The insect homolog of Down syndrome cell adhesion molecule (Dscam) manifests huge molecular diversity in its extracellular domain. High-affinity Dscam-Dscam interactions only occur between isoforms that carry identical extracellular domains. Homophilic Dscam signaling can, thus, vary in strength depending on the compositions of Dscams present on the opposing cell surfaces. Dscam abundantly exists in the developing nervous system and governs arborization and proper elaboration of neurites. Notably, individual neurons may stochastically and dynamically express a small subset of Dscam isoforms such that any given neurite can be endowed with a unique repertoire of Dscams. This allows individual neurites to recognize their sister branches. Self-recognition leads to self-repulsion, ensuring divergent migration of sister processes. By contrast, weak homophilic Dscam interactions may promote fasciculation of neurites that express analogous, but not identical, Dscams. Differential Dscam binding may provide graded cell recognition that in turn governs complex neuronal morphogenesis.

View Publication Page
04/28/15 | Molecular dynamics simulations of the human glucose transporter GLUT1.
Park M
PLoS One. 2015 Apr 28;10(4):e0125361. doi: 10.1371/journal.pone.0125361

Glucose transporters (GLUTs) provide a pathway for glucose transport across membranes. Human GLUTs are implicated in devastating diseases such as heart disease, hyper- and hypo-glycemia, type 2 diabetes and caner. The human GLUT1 has been recently crystalized in the inward-facing open conformation. However, there is no other structural information for other conformations. The X-ray structures of E. coli Xylose permease (XylE), a glucose transporter homolog, are available in multiple conformations with and without the substrates D-xylose and D-glucose. XylE has high sequence homology to human GLUT1 and key residues in the sugar-binding pocket are conserved. Here we construct a homology model for human GLUT1 based on the available XylE crystal structure in the partially occluded outward-facing conformation. A long unbiased all atom molecular dynamics simulation starting from the model can capture a new fully opened outward-facing conformation. Our investigation of molecular interactions at the interface between the transmembrane (TM) domains and the intracellular helices (ICH) domain in the outward- and inward-facing conformation supports that the ICH domain likely stabilizes the outward-facing conformation in GLUT1. Furthermore, inducing a conformational transition, our simulations manifest a global asymmetric rocker switch motion and detailed molecular interactions between the substrate and residues through the water-filled selective pore along a pathway from the extracellular to the intracellular side. The results presented here are consistent with previously published biochemical, mutagenesis and functional studies. Together, this study shed light on the structure and functional relationships of GLUT1 in multiple conformational states.

View Publication Page
01/01/11 | Molecular evolution of juvenile hormone signaling.
Baumann A, WIlson T, Friedberg F
Gene Duplication: Book 2:
08/01/04 | Molecular Genetic Analysis of Ethanol Intoxication in Drosophila melanogaster.
Heberlein U, Wolf FW, Rothenfluh A, Guarnieri DJ
Integrative and Comparative Biology. 2004 Aug;44(4):269-74. doi: 10.1093/icb/44.4.269

Recently, the fruit fly Drosophila melanogaster has been introduced as a model system to study the molecular bases of a variety of ethanol-induced behaviors. It became immediately apparent that the behavioral changes elicited by acute ethanol exposure are remarkably similar in flies and mammals. Flies show signs of acute intoxication, which range from locomotor stimulation at low doses to complete sedation at higher doses and they develop tolerance upon intermittent ethanol exposure. Genetic screens for mutants with altered responsiveness to ethanol have been carried out and a few of the disrupted genes have been identified. This analysis, while still in its early stages, has already revealed some surprising molecular parallels with mammals. The availability of powerful tools for genetic manipulation in Drosophila, together with the high degree of conservation at the genomic level, make Drosophila a promising model organism to study the mechanism by which ethanol regulates behavior and the mechanisms underlying the organism's adaptation to long-term ethanol exposure.

View Publication Page
09/01/05 | Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism.
Zhang Z, Reese JC
Molecular and Cellular Biology. 2005 Sep;25(17):7399-411. doi: 10.1128/MCB.25.17.7399-7411.2005

In Saccharomyces cerevisiae, the repressor Crt1 and the global corepressor Ssn6-Tup1 repress the DNA damage-inducible ribonucleotide reductase (RNR) genes. Initiation of DNA damage signals causes the release of Crt1 and Ssn6-Tup1 from the promoter, coactivator recruitment, and derepression of transcription, indicating that Crt1 plays a crucial role in the switch between gene repression and activation. Here we have mapped the functional domains of Crt1 and identified two independent repression domains and a region required for gene activation. The N terminus of Crt1 is the major repression domain, it directly binds to the Ssn6-Tup1 complex, and its repression activities are dependent upon Ssn6-Tup1 and histone deacetylases (HDACs). In addition, we identified a C-terminal repression domain, which is independent of Ssn6-Tup1 and HDACs and functions at native genes in vivo. Furthermore, we show that TFIID and SWI/SNF bind to a region within the N terminus of Crt1, overlapping with but distinct from the Ssn6-Tup1 binding and repression domain, suggesting that Crt1 may have activator functions. Crt1 mutants were constructed to dissect its activator and repressor functions. All of the mutants were competent for repression of the DNA damage-inducible genes, but a majority were "derepression-defective" mutants. Further characterization of these mutants indicated that they are capable of receiving DNA damage signals and releasing the Ssn6-Tup1 complex from the promoter but are selectively impaired for TFIID and SWI/SNF recruitment. These results imply a two-step activation model of the DNA damage-inducible genes and that Crt1 functions as a signal-dependent dual-transcription activator and repressor that acts in a transient manner.

View Publication Page
Grigorieff Lab
06/30/09 | Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM.
Chen JZ, Settembre EC, Aoki ST, Zhang X, Bellamy AR, Dormitzer PR, Harrison SC, Grigorieff N
Proceedings of the National Academy of Sciences of the United States of America. 2009 Jun 30;106(26):10644-8. doi: 10.1073/pnas.0904024106

Rotaviruses, major causes of childhood gastroenteritis, are nonenveloped, icosahedral particles with double-strand RNA genomes. By the use of electron cryomicroscopy and single-particle reconstruction, we have visualized a rotavirus particle comprising the inner capsid coated with the trimeric outer-layer protein, VP7, at a resolution (4 A) comparable with that of X-ray crystallography. We have traced the VP7 polypeptide chain, including parts not seen in its X-ray crystal structure. The 3 well-ordered, 30-residue, N-terminal "arms" of each VP7 trimer grip the underlying trimer of VP6, an inner-capsid protein. Structural differences between free and particle-bound VP7 and between free and VP7-coated inner capsids may regulate mRNA transcription and release. The Ca(2+)-stabilized VP7 intratrimer contact region, which presents important neutralizing epitopes, is unaltered upon capsid binding.

View Publication Page