Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Karpova Lab / Publications
general_search_page-panel_pane_1 | views_panes

9 Publications

Showing 1-9 of 9 results
10/06/16 | A designer AAV variant permits efficient retrograde access to projection neurons.
Tervo DGowanlock, Hwang B, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang C, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY
Neuron. 2016 Oct 6:. doi: 10.1016/j.neuron.2016.09.021

Efficient retrograde access to projection neurons for the delivery of sensors and effectors constitutes an important and enabling capability for neural circuit dissection. Such an approach would also be useful for gene therapy, including the treatment of neurodegenerative disorders characterized by pathological spread through functionally connected and highly distributed networks. Viral vectors, in particular, are powerful gene delivery vehicles for the nervous system, but all available tools suffer from inefficient retrograde transport or limited clinical potential. To address this need, we applied in vivo directed evolution to engineer potent retrograde functionality into the capsid of adeno-associated virus (AAV), a vector that has shown promise in neuroscience research and the clinic. A newly evolved variant, rAAV2-retro, permits robust retrograde access to projection neurons with efficiency comparable to classical synthetic retrograde tracers and enables sufficient sensor/effector expression for functional circuit interrogation and in vivo genome editing in targeted neuronal populations. VIDEO ABSTRACT.

View Publication Page
03/14/16 | Editorial overview: Neurobiology of cognitive behavior: Complexity of neural computation and cognition.
Karpova A, Kiani R
Current Opinion in Neurobiology. 2016 Mar 14:. doi: 10.1016/j.conb.2016.03.003
02/11/16 | Toward the neural implementation of structure learning.
Tervo DGowan, Tenenbaum JB, Gershman SJ
Current Opinion in Neurobiology. 2016 Feb 11;37:99-105. doi: 10.1016/j.conb.2016.01.014

Despite significant advances in neuroscience, the neural bases of intelligence remain poorly understood. Arguably the most elusive aspect of intelligence is the ability to make robust inferences that go far beyond one's experience. Animals categorize objects, learn to vocalize and may even estimate causal relationships - all in the face of data that is often ambiguous and sparse. Such inductive leaps are thought to result from the brain's ability to infer latent structure that governs the environment. However, we know little about the neural computations that underlie this ability. Recent advances in developing computational frameworks that can support efficient structure learning and inductive inference may provide insight into the underlying component processes and help pave the path for uncovering their neural implementation.

View Publication Page
09/10/15 | Dopamine is required for the neural representation and control of movement vigor.
Panigrahi B, Martin KA, Li Y, Graves AR, Vollmer A, Olson L, Mensh BD, Karpova AY, Dudman JT
Cell. 2015 Sep 10;162(6):1418-30. doi: 10.1016/j.cell.2015.08.014

Progressive depletion of midbrain dopamine neurons (PDD) is associated with deficits in the initiation, speed, and fluidity of voluntary movement. Models of basal ganglia function focus on initiation deficits; however, it is unclear how they account for deficits in the speed or amplitude of movement (vigor). Using an effort-based operant conditioning task for head-fixed mice, we discovered distinct functional classes of neurons in the dorsal striatum that represent movement vigor. Mice with PDD exhibited a progressive reduction in vigor, along with a selective impairment of its neural representation in striatum. Restoration of dopaminergic tone with a synthetic precursor ameliorated deficits in movement vigor and its neural representation, while suppression of striatal activity during movement was sufficient to reduce vigor. Thus, dopaminergic input to the dorsal striatum is indispensable for the emergence of striatal activity that mediates adaptive changes in movement vigor. These results suggest refined intervention strategies for Parkinson’s disease.

View Publication Page
09/25/14 | Behavioral variability through stochastic choice and its gating by anterior cingulate cortex.
Tervo DG, Proskurin M, Manakov M, Kabra M, Vollmer A, Branson K, Karpova AY
Cell. 2014 Sep 25;159(1):21-32. doi: 10.1016/j.cell.2014.08.037

Behavioral choices that ignore prior experience promote exploration and unpredictability but are seemingly at odds with the brain's tendency to use experience to optimize behavioral choice. Indeed, when faced with virtual competitors, primates resort to strategic counterprediction rather than to stochastic choice. Here, we show that rats also use history- and model-based strategies when faced with similar competitors but can switch to a "stochastic" mode when challenged with a competitor that they cannot defeat by counterprediction. In this mode, outcomes associated with an animal's actions are ignored, and normal engagement of anterior cingulate cortex (ACC) is suppressed. Using circuit perturbations in transgenic rats, we demonstrate that switching between strategic and stochastic behavioral modes is controlled by locus coeruleus input into ACC. Our findings suggest that, under conditions of uncertainty about environmental rules, changes in noradrenergic input alter ACC output and prevent erroneous beliefs from guiding decisions, thus enabling behavioral variation.

View Publication Page
10/14/13 | A neuron-based screening platform for optimizing genetically-encoded calcium indicators.
Wardill TJ., Chen T, Schreiter ER, Hasseman JP, Tsegaye G, Fosque BF, Behnam R, Shields BC, Ramirez M, Kimmel BE, Kerr RA, Jayaraman V, Looger LL, Svoboda K, Kim DS.
PLoS One. 2013;8:e77728. doi: 10.1371/journal.pone.0077728

Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude.

View Publication Page
10/05/12 | Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty.
Karlsson MP, Tervo DG, Karpova AY
Science. 2012 Oct 5;338:135-9. doi: 10.1126/science.1226518

Regions within the prefrontal cortex are thought to process beliefs about the world, but little is known about the circuit dynamics underlying the formation and modification of these beliefs. Using a task that permits dissociation between the activity encoding an animal’s internal state and that encoding aspects of behavior, we found that transient increases in the volatility of activity in the rat medial prefrontal cortex accompany periods when an animal’s belief is modified after an environmental change. Activity across the majority of sampled neurons underwent marked, abrupt, and coordinated changes when prior belief was abandoned in favor of exploration of alternative strategies. These dynamics reflect network switches to a state of instability, which diminishes over the period of exploration as new stable representations are formed.

View Publication Page
10/01/07 | Rapidly inducible, genetically targeted inactivation of neural and synaptic activity in vivo.
Tervo D, Karpova AY
Current Opinion in Neurobiology. 2007 Oct;17(5):581-6. doi: 10.1016/j.conb.2007.10.002

Inducible and reversible perturbation of the activity of selected neurons in vivo is critical to understanding the dynamics of brain circuits. Several genetically encoded systems for rapid inducible neuronal silencing have been developed in the past few years offering an arsenal of tools for in vivo experiments. Some systems are based on ion-channels or pumps, others on G protein coupled receptors, and yet others on modified presynaptic proteins. Inducers range from light to small molecules to peptides. This diversity results in differences in the various parameters that may determine the applicability of each tool to a particular biological question. Although further development would be beneficial, the current silencing tool kit already provides the ability to make specific perturbations of circuit function in behaving animals.

View Publication Page
12/08/05 | Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons.
Karpova AY, Tervo DG, Gray NW, Svoboda K
Neuron. 2005 Dec 8;48(5):727-35. doi: 10.1016/j.neuron.2005.11.015

Inducible and reversible silencing of selected neurons in vivo is critical to understanding the structure and dynamics of brain circuits. We have developed Molecules for Inactivation of Synaptic Transmission (MISTs) that can be genetically targeted to allow the reversible inactivation of neurotransmitter release. MISTs consist of modified presynaptic proteins that interfere with the synaptic vesicle cycle when crosslinked by small molecule "dimerizers." MISTs based on the vesicle proteins VAMP2/Synaptobrevin and Synaptophysin induced rapid ( approximately 10 min) and reversible block of synaptic transmission in cultured neurons and brain slices. In transgenic mice expressing MISTs selectively in Purkinje neurons, administration of dimerizer reduced learning and performance of the rotarod behavior. MISTs allow for specific, inducible, and reversible lesions in neuronal circuits and may provide treatment of disorders associated with neuronal hyperactivity.

View Publication Page