Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

161 Publications

Showing 61-70 of 161 results
Your Criteria:
    05/04/24 | Host ZCCHC3 blocks HIV-1 infection and production by a dual mechanism
    Binbin Yi , Yuri L Tanaka , Hidetaka Kosako , Erika P Butlertanaka , Prabuddha Sengupta , Jennifer Lippincott-Schwartz , Akatsuki Saito , Shige H. Yoshimura
    iScience. 05/2024:. doi: 10.1101/2023.06.14.544911

    Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. While anti-human immunodeficiency virus type 1 (HIV-1) host restriction factors have been identified, most of them are antagonized by viral proteins. This has severely hindered their development in anti-HIV-1 therapy. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel anti-HIV-1 factor that is not antagonized by viral proteins. ZCCHC3 suppresses production of HIV-1 and other retroviruses. We show that ZCCHC3 acts by binding to Gag nucleocapsid protein via zinc-finger motifs. This prevents interaction between the Gag nucleocapsid protein and viral genome and results in production of genome-deficient virions. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. Such a dual antiviral mechanism is distinct from that of any other known host restriction factors. Therefore, ZCCHC3 is a novel potential target in anti-HIV-1 therapy.

    View Publication Page
    02/01/21 | Image-based pooled whole-genome CRISPRi screening for subcellular phenotypes.
    Kanfer G, Sarraf SA, Maman Y, Baldwin H, Dominguez-Martin E, Johnson KR, Ward ME, Kampmann M, Lippincott-Schwartz J, Youle RJ
    Journal of Cell Biology. 2021 Feb 01;220(2):. doi: 10.1083/jcb.202006180

    Genome-wide CRISPR screens have transformed our ability to systematically interrogate human gene function, but are currently limited to a subset of cellular phenotypes. We report a novel pooled screening approach for a wider range of cellular and subtle subcellular phenotypes. Machine learning and convolutional neural network models are trained on the subcellular phenotype to be queried. Genome-wide screening then utilizes cells stably expressing dCas9-KRAB (CRISPRi), photoactivatable fluorescent protein (PA-mCherry), and a lentiviral guide RNA (gRNA) pool. Cells are screened by using microscopy and classified by artificial intelligence (AI) algorithms, which precisely identify the genetically altered phenotype. Cells with the phenotype of interest are photoactivated and isolated via flow cytometry, and the gRNAs are identified by sequencing. A proof-of-concept screen accurately identified PINK1 as essential for Parkin recruitment to mitochondria. A genome-wide screen identified factors mediating TFEB relocation from the nucleus to the cytosol upon prolonged starvation. Twenty-one of the 64 hits called by the neural network model were independently validated, revealing new effectors of TFEB subcellular localization. This approach, AI-photoswitchable screening (AI-PS), offers a novel screening platform capable of classifying a broad range of mammalian subcellular morphologies, an approach largely unattainable with current methodologies at genome-wide scale.

    View Publication Page
    11/01/10 | Imaging: visualizing the possibilities.
    Lippincott-Schwartz J
    Journal of cell science. 2010 Nov 1;123(Pt 21):3619-20. doi: 10.1242/jcs081539
    11/07/17 | Immature HIV-1 lattice assembly dynamics are regulated by scaffolding from nucleic acid and the plasma membrane.
    Pak AJ, Grime JM, Sengupta P, Chen AK, Durumeric AE, Srivastava A, Yeager M, Briggs JA, Lippincott-Schwartz J, Voth GA
    Proceedings of the National Academy of Sciences of the United States of America. 2017 Nov 07;114(47):E10056-65. doi: 10.1073/pnas.1706600114

    The packaging and budding of Gag polyprotein and viral RNA is a critical step in the HIV-1 life cycle. High-resolution structures of the Gag polyprotein have revealed that the capsid (CA) and spacer peptide 1 (SP1) domains contain important interfaces for Gag self-assembly. However, the molecular details of the multimerization process, especially in the presence of RNA and the cell membrane, have remained unclear. In this work, we investigate the mechanisms that work in concert between the polyproteins, RNA, and membrane to promote immature lattice growth. We develop a coarse-grained (CG) computational model that is derived from subnanometer resolution structural data. Our simulations recapitulate contiguous and hexameric lattice assembly driven only by weak anisotropic attractions at the helical CA-SP1 junction. Importantly, analysis from CG and single-particle tracking photoactivated localization (spt-PALM) trajectories indicates that viral RNA and the membrane are critical constituents that actively promote Gag multimerization through scaffolding, while overexpression of short competitor RNA can suppress assembly. We also find that the CA amino-terminal domain imparts intrinsic curvature to the Gag lattice. As a consequence, immature lattice growth appears to be coupled to the dynamics of spontaneous membrane deformation. Our findings elucidate a simple network of interactions that regulate the early stages of HIV-1 assembly and budding.

    View Publication Page
    12/15/20 | In situ differentiation of iridophore crystallotypes underlies zebrafish stripe patterning.
    Gur D, Bain EJ, Johnson KR, Aman AJ, Pasoili HA, Flynn JD, Allen MC, Deheyn DD, Lee JC, Lippincott-Schwartz J, Parichy DM
    Nature Communications. 2020 Dec 15;11(1):6391. doi: 10.1038/s41467-020-20088-1

    Skin color patterns are ubiquitous in nature, impact social behavior, predator avoidance, and protection from ultraviolet irradiation. A leading model system for vertebrate skin patterning is the zebrafish; its alternating blue stripes and yellow interstripes depend on light-reflecting cells called iridophores. It was suggested that the zebrafish's color pattern arises from a single type of iridophore migrating differentially to stripes and interstripes. However, here we find that iridophores do not migrate between stripes and interstripes but instead differentiate and proliferate in-place, based on their micro-environment. RNA-sequencing analysis further reveals that stripe and interstripe iridophores have different transcriptomic states, while cryogenic-scanning-electron-microscopy and micro-X-ray diffraction identify different crystal-arrays architectures, indicating that stripe and interstripe iridophores are different cell types. Based on these results, we present an alternative model of skin patterning in zebrafish in which distinct iridophore crystallotypes containing specialized, physiologically responsive, organelles arise in stripe and interstripe by in-situ differentiation.

    View Publication Page
    12/05/13 | Incisive imaging and computation for cellular mysteries: lessons from abscission.
    Elia N, Ott C, Lippincott-Schwartz J
    Cell. 2013 Dec 5;155(6):1220-31. doi: 10.1016/j.cell.2013.11.011

    The final cleavage event that terminates cell division, abscission of the small, dense intercellular bridge, has been particularly challenging to resolve. Here, we describe imaging innovations that helped answer long-standing questions about the mechanism of abscission. We further explain how computational modeling of high-resolution data was employed to test hypotheses and generate additional insights. We present the model that emerges from application of these complimentary approaches. Similar experimental strategies will undoubtedly reveal exciting details about other underresolved cellular structures.

    View Publication Page
    12/09/13 | Increased mitochondrial fusion and autophagy help isolated hepatocytes repolarize in collagen sandwich cultures.
    Fu D, Lippincott-Schwartz J, Arias IM
    Autophagy. 2013 Dec;9(12):2154-5. doi: 10.4161/auto.26167

    Freshly isolated, depolarized rat hepatocytes can repolarize into bile canalicular networks when plated in collagen sandwich cultures. We studied the events underlying this repolarization process, focusing on how hepatocytes restore ATP synthesis and resupply biosynthetic precursors after the stress of being isolated from liver. We found that soon after being plated in collagen sandwich cultures, hepatocytes converted their mitochondria into highly fused networks. This occurred through a combination of upregulation of mitochondrial fusion proteins and downregulation of a mitochondrial fission protein. Mitochondria also became more active for oxidative phosphorylation, leading to overall increased ATP levels within cells. We further observed that autophagy was upregulated in the repolarizing hepatocytes. Boosted autophagy levels likely served to recycle cellular precursors, supplying building blocks for repolarization. Repolarizing hepatocytes also extensively degraded lipid droplets, whose fatty acids provide precursors for ?-oxidation to fuel oxidative phosphorylation in mitochondria. Thus, through coordination of mitochondrial fusion, autophagy, and lipid droplet consumption, depolarized hepatocytes are able to boost ATP synthesis and biosynthetic precursors to efficiently repolarize in collagen sandwich cultures.

    View Publication Page
    10/28/16 | Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER.
    Nixon-Abell J, Obara CJ, Weigel AV, Li D, Legant WR, Xu C, Pasolli HA, Harvey K, Hess HF, Betzig E, Blackstone C, Lippincott-Schwartz J
    Science (New York, N.Y.). 2016 Oct 28;354(6311):433-46. doi: 10.1126/science.aaf3928

    The endoplasmic reticulum (ER) is an expansive, membrane-enclosed organelle that plays crucial roles in numerous cellular functions. We used emerging superresolution imaging technologies to clarify the morphology and dynamics of the peripheral ER, which contacts and modulates most other intracellular organelles. Peripheral components of the ER have classically been described as comprising both tubules and flat sheets. We show that this system consists almost exclusively of tubules at varying densities, including structures that we term ER matrices. Conventional optical imaging technologies had led to misidentification of these structures as sheets because of the dense clustering of tubular junctions and a previously uncharacterized rapid form of ER motion. The existence of ER matrices explains previous confounding evidence that had indicated the occurrence of ER “sheet” proliferation after overexpression of tubular junction–forming proteins.

    View Publication Page
    09/12/13 | Insulin triggers surface-directed trafficking of sequestered GLUT4 storage vesicles marked by Rab10.
    Chen Y, Lippincott-Schwartz J
    Small GTPases. 2013 Jul-Sep;4(3):193-7. doi: 10.4161/sgtp.26471

    Understanding how glucose transporter isoform 4 (GLUT4) redistributes to the plasma membrane during insulin stimulation is a major goal of glucose transporter research. GLUT4 molecules normally reside in numerous intracellular compartments, including specialized storage vesicles and early/recycling endosomes. It is unclear how these diverse compartments respond to insulin stimulation to deliver GLUT4 molecules to the plasma membrane. For example, do they fuse with each other first or remain as separate compartments with different trafficking characteristics? Our recent live cell imaging studies are helping to clarify these issues. Using Rab proteins as specific markers to distinguish between storage vesicles and endosomes containing GLUT4, we demonstrate that it is primarily internal GLUT4 storage vesicles (GSVs) marked by Rab10 that approach and fuse at the plasma membrane and GSVs don't interact with endosomes on their way to the plasma membrane. These new findings add strong support to the model that GSV release from intracellular retention plays a major role in supplying GLUT4 molecules onto the PM under insulin stimulation.

    View Publication Page
    08/01/18 | Interacting organelles.
    Cohen S, Valm AM, Lippincott-Schwartz J
    Current Opinion in Cell Biology. 2018 Aug;53:84-91. doi: 10.1016/j.ceb.2018.06.003

    Eukaryotic cells are organized into membrane-bound organelles. These organelles communicate with one another through vesicular trafficking pathways and membrane contact sites (MCSs). MCSs are sites of close apposition between two or more organelles that play diverse roles in the exchange of metabolites, lipids and proteins. Organelle interactions at MCSs also are important for organelle division and biogenesis. For example, the division of several organelles, including mitochondria and endosomes, seem to be regulated by contacts with the endoplasmic reticulum (ER). Moreover, the biogenesis of autophagosomes and peroxisomes involves contributions from the ER and multiple other cellular compartments. Thus, organelle-organelle interactions allow cells to alter the shape and activities of their membrane-bound compartments, allowing them to cope with different developmental and environmental conditions.

    View Publication Page