Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

193 Publications

Showing 41-50 of 193 results
Your Criteria:
    02/10/21 | Biomolecular Condensates and Their Links to Cancer Progression.
    Cai D, Liu Z, Lippincott-Schwartz J
    Trends in Biochemical Sciences. 2021 Feb 10:. doi: 10.1016/j.tibs.2021.01.002

    Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.

    View Publication Page
    07/01/21 | Biomolecular Condensates and Their Links to Cancer Progression.
    Cai D, Liu Z, Lippincott-Schwartz J
    Trends in Biochemical Sciences. 2021 Jul 01;46(7):535-549. doi: 10.1016/j.tibs.2021.01.002

    Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.

    View Publication Page
    10/28/21 | Biosensors based on peptide exposure show single molecule conformations in live cells.
    Liu B, Stone OJ, Pablo M, Herron JC, Nogueira AT, Dagliyan O, Grimm JB, Lavis LD, Elston TC, Hahn KM
    Cell. 2021 Oct 28;184(22):5670-5685. doi: 10.1016/j.cell.2021.09.026

    We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.

    View Publication Page
    04/01/21 | Brain microvasculature has a common topology with local differences in geometry that match metabolic load.
    Ji X, Ferreira T, Friedman B, Liu R, Liechty H, Bas E, Chandrashekar J, Kleinfeld D
    Neuron. 2021 April 01;109(7):1168. doi: 10.1016/j.neuron.2021.02.006

    The microvasculature underlies the supply networks that support neuronal activity within heterogeneous brain regions. What are common versus heterogeneous aspects of the connectivity, density, and orientation of capillary networks? To address this, we imaged, reconstructed, and analyzed the microvasculature connectome in whole adult mice brains with sub-micrometer resolution. Graph analysis revealed common network topology across the brain that leads to a shared structural robustness against the rarefaction of vessels. Geometrical analysis, based on anatomically accurate reconstructions, uncovered a scaling law that links length density, i.e., the length of vessel per volume, with tissue-to-vessel distances. We then derive a formula that connects regional differences in metabolism to differences in length density and, further, predicts a common value of maximum tissue oxygen tension across the brain. Last, the orientation of capillaries is weakly anisotropic with the exception of a few strongly anisotropic regions; this variation can impact the interpretation of fMRI data.

    View Publication Page
    07/01/21 | Bursting potentiates the neuro-AI connection.
    Sun W, Zhao X, Spruston N
    Nature Neuroscience. 2021 Jul 01;24(7):905-6. doi: 10.1038/s41593-021-00844-2
    08/24/21 | Campylobacter jejuni Triggers Signaling through Host Cell Focal Adhesions To Inhibit Cell Motility.
    Klappenbach CM, Negretti NM, Aaron J, Chew T, Konkel ME
    mBio. 2021 Aug 24:e0149421. doi: 10.1128/mBio.01494-21

    Campylobacter jejuni is a major foodborne pathogen that exploits the focal adhesions of intestinal cells to promote invasion and cause severe gastritis. Focal adhesions are multiprotein complexes involved in bidirectional signaling between the actin cytoskeleton and the extracellular matrix. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected cells using a comprehensive set of approaches, including confocal microscopy of live and fixed cells, immunoblotting, and superresolution interferometric photoactivated localization microscopy (iPALM). We found that C. jejuni infection of epithelial cells results in increased focal adhesion size and altered topology. These changes resulted in a persistent modulatory effect on the host cell focal adhesion, evidenced by an increase in cell adhesion strength, a decrease in individual cell motility, and a reduction in collective cell migration. We discovered that C. jejuni infection causes an increase in phosphorylation of paxillin and an alteration of paxillin turnover at the focal adhesion, which together represent a potential mechanistic basis for altered cell motility. Finally, we observed that infection of epithelial cells with the C. jejuni wild-type strain in the presence of a protein synthesis inhibitor, a C. jejuni CadF and FlpA fibronectin-binding protein mutant, or a C. jejuni flagellar export mutant blunts paxillin phosphorylation and partially reestablishes individual host cell motility and collective cell migration. These findings provide a potential mechanism for the restricted intestinal repair observed in C. jejuni-infected animals and raise the possibility that bacteria targeting extracellular matrix components can alter cell behavior after binding and internalization by manipulating focal adhesions. Campylobacter jejuni is a major foodborne pathogen that causes severe gastritis. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected epithelial cells. Focal adhesions act as signaling complexes that connect the extracellular matrix to the intracellular cytoskeleton. The key findings of this study show that C. jejuni changes the structure (size and position), composition, and function of cellular focal adhesions using a combination of virulence factors. Mechanistically, we found that the changes in focal adhesion dynamics are dependent upon the activation of host cell signaling pathways, which affect the assembly and disassembly of cellular proteins from the focal adhesion. To summarize, we have identified a new cellular phenotype in C. jejuni-infected cells that may be responsible for the restricted intestinal repair observed in C. jejuni-infected animals.

    View Publication Page
    08/24/21 | Campylobacter jejuni Triggers Signaling through Host Cell Focal Adhesions To Inhibit Cell Motility.
    Klappenbach CM, Negretti NM, Aaron J, Chew T, Konkel ME
    mBio. 2021 Aug 24;12(4):e0149421. doi: 10.1128/mBio.01494-21

    Campylobacter jejuni is a major foodborne pathogen that exploits the focal adhesions of intestinal cells to promote invasion and cause severe gastritis. Focal adhesions are multiprotein complexes involved in bidirectional signaling between the actin cytoskeleton and the extracellular matrix. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected cells using a comprehensive set of approaches, including confocal microscopy of live and fixed cells, immunoblotting, and superresolution interferometric photoactivated localization microscopy (iPALM). We found that C. jejuni infection of epithelial cells results in increased focal adhesion size and altered topology. These changes resulted in a persistent modulatory effect on the host cell focal adhesion, evidenced by an increase in cell adhesion strength, a decrease in individual cell motility, and a reduction in collective cell migration. We discovered that C. jejuni infection causes an increase in phosphorylation of paxillin and an alteration of paxillin turnover at the focal adhesion, which together represent a potential mechanistic basis for altered cell motility. Finally, we observed that infection of epithelial cells with the C. jejuni wild-type strain in the presence of a protein synthesis inhibitor, a C. jejuni CadF and FlpA fibronectin-binding protein mutant, or a C. jejuni flagellar export mutant blunts paxillin phosphorylation and partially reestablishes individual host cell motility and collective cell migration. These findings provide a potential mechanism for the restricted intestinal repair observed in C. jejuni-infected animals and raise the possibility that bacteria targeting extracellular matrix components can alter cell behavior after binding and internalization by manipulating focal adhesions. Campylobacter jejuni is a major foodborne pathogen that causes severe gastritis. We investigated the dynamics of focal adhesion structure and function in C. jejuni-infected epithelial cells. Focal adhesions act as signaling complexes that connect the extracellular matrix to the intracellular cytoskeleton. The key findings of this study show that C. jejuni changes the structure (size and position), composition, and function of cellular focal adhesions using a combination of virulence factors. Mechanistically, we found that the changes in focal adhesion dynamics are dependent upon the activation of host cell signaling pathways, which affect the assembly and disassembly of cellular proteins from the focal adhesion. To summarize, we have identified a new cellular phenotype in C. jejuni-infected cells that may be responsible for the restricted intestinal repair observed in C. jejuni-infected animals.

    View Publication Page
    01/07/21 | Cellpose: a generalist algorithm for cellular segmentation.
    Stringer C, Wang T, Michaelos M, Pachitariu M
    Nature Methods. 2021 Jan 07;18(1):100-106. doi: 10.1038/s41592-020-01018-x

    Many biological applications require the segmentation of cell bodies, membranes and nuclei from microscopy images. Deep learning has enabled great progress on this problem, but current methods are specialized for images that have large training datasets. Here we introduce a generalist, deep learning-based segmentation method called Cellpose, which can precisely segment cells from a wide range of image types and does not require model retraining or parameter adjustments. Cellpose was trained on a new dataset of highly varied images of cells, containing over 70,000 segmented objects. We also demonstrate a three-dimensional (3D) extension of Cellpose that reuses the two-dimensional (2D) model and does not require 3D-labeled data. To support community contributions to the training data, we developed software for manual labeling and for curation of the automated results. Periodically retraining the model on the community-contributed data will ensure that Cellpose improves constantly.

    View Publication Page
    09/30/21 | Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging.
    Li T, Fu T, Wong KK, Li H, Xie Q, Luginbuhl DJ, Wagner MJ, Betzig E, Luo L
    Cell. 2021 Sep 30;184(20):5107. doi: 10.1016/j.cell.2021.08.030

    Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.

    View Publication Page
    01/07/21 | Characterization of a common progenitor pool of the epicardium and myocardium.
    Tyser RC, Ibarra-Soria X, McDole K, A Jayaram S, Godwin J, van den Brand TA, Miranda AM, Scialdone A, Keller PJ, Marioni JC, Srinivas S
    Science. 2021 Jan 07:. doi: 10.1126/science.abb2986

    The mammalian heart is derived from multiple cell lineages; however, our understanding of when and how the diverse cardiac cell types arise is limited. We mapped the origin of the embryonic mouse heart at single-cell resolution using a combination of transcriptomic, imaging, and genetic lineage labeling approaches. This provided a transcriptional and anatomic definition of cardiac progenitor types. Furthermore, it revealed a cardiac progenitor pool that is anatomically and transcriptionally distinct from currently known cardiac progenitors. Besides contributing to cardiomyocytes, these cells also represent the earliest progenitor of the epicardium, a source of trophic factors and cells during cardiac development and injury. This study provides detailed insights into the formation of early cardiac cell types, with particular relevance to the development of cell-based cardiac regenerative therapies.

    View Publication Page