Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

16 Publications

Showing 1-10 of 16 results
Your Criteria:
    02/01/10 | Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues.
    Ji N, Milkie DE, Betzig E
    Nature Methods. 2010 Feb;7:141-7. doi: 10.1038/nmeth.1411

    Biological specimens are rife with optical inhomogeneities that seriously degrade imaging performance under all but the most ideal conditions. Measuring and then correcting for these inhomogeneities is the province of adaptive optics. Here we introduce an approach to adaptive optics in microscopy wherein the rear pupil of an objective lens is segmented into subregions, and light is directed individually to each subregion to measure, by image shift, the deflection faced by each group of rays as they emerge from the objective and travel through the specimen toward the focus. Applying our method to two-photon microscopy, we could recover near-diffraction-limited performance from a variety of biological and nonbiological samples exhibiting aberrations large or small and smoothly varying or abruptly changing. In particular, results from fixed mouse cortical slices illustrate our ability to improve signal and resolution to depths of 400 microm.

    View Publication Page
    02/01/10 | Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. (With commentary)
    Ji N, Milkie DE, Betzig E
    Nature Methods. 2010 Feb;7:141-7. doi: 10.1038/nmeth.1411

    Biological specimens are rife with optical inhomogeneities that seriously degrade imaging performance under all but the most ideal conditions. Measuring and then correcting for these inhomogeneities is the province of adaptive optics. Here we introduce an approach to adaptive optics in microscopy wherein the rear pupil of an objective lens is segmented into subregions, and light is directed individually to each subregion to measure, by image shift, the deflection faced by each group of rays as they emerge from the objective and travel through the specimen toward the focus. Applying our method to two-photon microscopy, we could recover near-diffraction-limited performance from a variety of biological and nonbiological samples exhibiting aberrations large or small and smoothly varying or abruptly changing. In particular, results from fixed mouse cortical slices illustrate our ability to improve signal and resolution to depths of 400 microm.

    Commentary: Introduces a new, zonal approach to adaptive optics (AO) in microscopy suitable for highly inhomogeneous and/or scattering samples such as living tissue. The method is unique in its ability to handle large amplitude aberrations (>20 wavelengths), including spatially complex aberrations involving high order modes beyond the ability of most AO actuators to correct. As befitting a technique designed for in vivo fluorescence imaging, it is also photon efficient.
    Although used here in conjunction with two photon microscopy to demonstrate correction deep into scattering tissue, the same principle of pupil segmentation might be profitably adapted to other point-scanning or widefield methods. For example, plane illumination microscopy of multicellular specimens is often beset by substantial aberrations, and all far-field superresolution methods are exquisitely sensitive to aberrations.

    View Publication Page
    02/01/10 | Axial CID and high pressure resonance CID in a miniature ion trap mass spectrometer using a discontinuous atmospheric pressure interface.
    Gao L, Li G, Cooks RG
    Journal of the American Society for Mass Spectrometry. 2010 Feb;21(2):209-14. doi: 10.1364/AO.50.001792

    Axial collision induced dissociation (CID) and high-pressure resonance CID were implemented and compared with normal low-pressure resonance CID in a miniature ion trap mass spectrometer to obtain more complete fragmentation spectra. Axial CID was realized simply by applying a potential to the discontinuous atmospheric pressure interface (DAPI) capillary without performing parent ion isolation before dissociation. High-pressure resonance CID employed a double-introduction pulse scan function, by means of which precursor ions isolated at low-pressure (<10(-3) torr) were dissociated at high-pressure (0.1 torr-1 torr) with higher excitation energy, so that tandem MS of isolated precursor ions was achieved and extensive fragmentation was obtained. A simple peptide (Leu-enkephalin) and dye molecule (rhodamine B) ionized by ESI were used to investigate both methods and compare them with normal low-pressure resonance CID.

    View Publication Page
    02/01/10 | Birth time/order-dependent neuron type specification.
    Kao C, Lee T
    Current Opinion in Neurobiology. 2010 Feb;20(1):14-21. doi: 10.1016/j.conb.2009.10.017

    Neurons derived from the same progenitor may acquire different fates according to their birth timing/order. To reveal temporally guided cell fates, we must determine neuron types as well as their lineage relationships and times of birth. Recent advances in genetic lineage analysis and fate mapping are facilitating such studies. For example, high-resolution lineage analysis can identify each sequentially derived neuron of a lineage and has revealed abrupt temporal identity changes in diverse Drosophila neuronal lineages. In addition, fate mapping of mouse neurons made from the same pool of precursors shows production of specific neuron types in specific temporal patterns. The tools used in these analyses are helping to further our understanding of the genetics of neuronal temporal identity.

    View Publication Page
    02/01/10 | Convolutional networks can learn to generate affinity graphs for image segmentation.
    Turaga SC, Murray JF, Jain V, Roth F, Helmstaedter M, Briggman K, Denk W, Seung HS
    Neural Computation. 2010 Feb;22(2):511-38. doi: 10.1162/neco.2009.10-08-881

    Many image segmentation algorithms first generate an affinity graph and then partition it. We present a machine learning approach to computing an affinity graph using a convolutional network (CN) trained using ground truth provided by human experts. The CN affinity graph can be paired with any standard partitioning algorithm and improves segmentation accuracy significantly compared to standard hand-designed affinity functions. We apply our algorithm to the challenging 3D segmentation problem of reconstructing neuronal processes from volumetric electron microscopy (EM) and show that we are able to learn a good affinity graph directly from the raw EM images. Further, we show that our affinity graph improves the segmentation accuracy of both simple and sophisticated graph partitioning algorithms. In contrast to previous work, we do not rely on prior knowledge in the form of hand-designed image features or image preprocessing. Thus, we expect our algorithm to generalize effectively to arbitrary image types.

    View Publication Page
    02/05/10 | Distinct protein domains and expression patterns confer divergent axon guidance functions for Drosophila Robo receptors.
    Spitzweck B, Brankatschk M, Dickson BJ
    Cell. 2010 Feb 5;140(3):409-20. doi: 10.1016/j.cell.2010.01.002

    The orthogonal array of axon pathways in the Drosophila CNS is constructed in part under the control of three Robo family axon guidance receptors: Robo1, Robo2 and Robo3. Each of these receptors is responsible for a distinct set of guidance decisions. To determine the molecular basis for these functional specializations, we used homologous recombination to create a series of 9 "robo swap" alleles: expressing each of the three Robo receptors from each of the three robo loci. We demonstrate that the lateral positioning of longitudinal axon pathways relies primarily on differences in gene regulation, not distinct combinations of Robo proteins as previously thought. In contrast, specific features of the Robo1 and Robo2 proteins contribute to their distinct functions in commissure formation. These specializations allow Robo1 to prevent crossing and Robo2 to promote crossing. These data demonstrate how diversification of expression and structure within a single family of guidance receptors can shape complex patterns of neuronal wiring.

    View Publication Page
    02/03/10 | Distinct representations and theta dynamics in dorsal and ventral hippocampus.
    Royer S, Sirota A, Patel J, Buzsáki G
    The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2010 Feb 3;30(5):1777-87. doi: 10.1523/JNEUROSCI.4681-09.2010

    Although anatomical, lesion, and imaging studies of the hippocampus indicate qualitatively different information processing along its septo-temporal axis, physiological mechanisms supporting such distinction are missing. We found fundamental differences between the dorsal (dCA3) and the ventral-most parts (vCA3) of the hippocampus in both environmental representation and temporal dynamics. Discrete place fields of dCA3 neurons evenly covered all parts of the testing environments. In contrast, vCA3 neurons (1) rarely showed continuous two-dimensional place fields, (2) differentiated open and closed arms of a radial maze, and (3) discharged similar firing patterns with respect to the goals, both on multiple arms of a radial maze and during opposite journeys in a zigzag maze. In addition, theta power and the fraction of theta-rhythmic neurons were substantially reduced in the ventral compared with dorsal hippocampus. We hypothesize that the spatial representation in the septo-temporal axis of the hippocampus is progressively decreased. This change is paralleled with a reduction of theta rhythm and an increased representation of nonspatial information.

    View Publication Page
    02/01/10 | Ethanol-regulated genes that contribute to ethanol sensitivity and rapid tolerance in Drosophila.
    Kong EC, Allouche L, Chapot PA, Vranizan K, Moore MS, Heberlein U, Wolf FW
    Alcoholism, Clinical and Experimental Research. 2010 Feb;34(2):302-16. doi: 10.1111/j.1530-0277.2009.01093.x

    BACKGROUND: Increased ethanol intake, a major predictor for the development of alcohol use disorders, is facilitated by the development of tolerance to both the aversive and pleasurable effects of the drug. The molecular mechanisms underlying ethanol tolerance development are complex and are not yet well understood.

    METHODS: To identify genetic mechanisms that contribute to ethanol tolerance, we examined the time course of gene expression changes elicited by a single sedating dose of ethanol in Drosophila, and completed a behavioral survey of strains harboring mutations in ethanol-regulated genes.

    RESULTS: Enrichment for genes in metabolism, nucleic acid binding, olfaction, regulation of signal transduction, and stress suggests that these biological processes are coordinately affected by ethanol exposure. We also detected a coordinate up-regulation of genes in the Toll and Imd innate immunity signal transduction pathways. A multi-study comparison revealed a small set of genes showing similar regulation, including increased expression of 3 genes for serine biosynthesis. A survey of Drosophila strains harboring mutations in ethanol-regulated genes for ethanol sensitivity and tolerance phenotypes revealed roles for serine biosynthesis, olfaction, transcriptional regulation, immunity, and metabolism. Flies harboring deletions of the genes encoding the olfactory co-receptor Or83b or the sirtuin Sir2 showed marked changes in the development of ethanol tolerance.

    CONCLUSIONS: Our findings implicate novel roles for these genes in regulating ethanol behavioral responses.

    View Publication Page
    02/01/10 | Genome sequence of the pea aphid Acyrthosiphon pisum.
    PLoS Biology. 2010 Feb;8(2):e1000313. doi: 10.1371/journal.pbio.1000313

    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.

    View Publication Page
    02/01/10 | Malaria severity and human nitric oxide synthase type 2 (NOS2) promoter haplotypes.
    Levesque MC, Hobbs MR, O’Loughlin CW, Chancellor JA, Chen Y, Tkachuk AN, Booth J, Patch KB, Allgood S, Pole AR, Fernandez CA, Mwaikambo ED, Mutabingwa TK, Fried M, Sorensen B, Duffy PE, Granger DL, Anstey NM, Weinberg JB
    Human Genetics. 2010 Feb;127(2):163-82. doi: 10.1007/s00439-009-0753-3

    Nitric oxide (NO) mediates host resistance to severe malaria and other infectious diseases. NO production and mononuclear cell expression of the NO producing enzyme-inducible nitric oxide synthase (NOS2) have been associated with protection from severe falciparum malaria. The purpose of this study was to identify single nucleotide polymorphisms (SNPs) and haplotypes in the NOS2 promoter, to identify associations of these haplotypes with malaria severity and to test the effects of these polymorphisms on promoter activity. We identified 34 SNPs in the proximal 7.3 kb region of the NOS2 promoter and inferred NOS2 promoter haplotypes based on genotyping 24 of these SNPs in a population of Tanzanian children with and without cerebral malaria. We identified 71 haplotypes; 24 of these haplotypes comprised 82% of the alleles. We determined whether NOS2 promoter haplotypes were associated with malaria severity in two groups of subjects from Dar es Salaam (N = 185 and N = 250) and in an inception cohort of children from Muheza-Tanga, Tanzania (N = 883). We did not find consistent associations of NOS2 promoter haplotypes with malaria severity or malarial anemia, although interpretation of these results was potentially limited by the sample size of each group. Furthermore, cytokine-induced NOS2 promoter activity determined using luciferase reporter constructs containing the proximal 7.3 kb region of the NOS2 promoter and the G-954C or C-1173T SNPs did not differ from NOS2 promoter constructs that lacked these polymorphisms. Taken together, these studies suggest that the relationship between NOS2 promoter polymorphisms and malaria severity is more complex than previously described.

    View Publication Page