Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

94 Publications

Showing 71-80 of 94 results
Your Criteria:
    07/07/09 | Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila.
    Joseph RM, Devineni AV, King IF, Heberlein U
    Proceedings of the National Academy of Sciences of the United States of America. 2009 Jul 7;106(27):11352-7. doi: 10.1073/pnas.0901419106

    Selection of appropriate oviposition sites is essential for progeny survival and fitness in generalist insect species, such as Drosophila melanogaster, yet little is known about the mechanisms regulating how environmental conditions and innate adult preferences are evaluated and balanced to yield the final substrate choice for egg-deposition. Female D. melanogaster are attracted to food containing acetic acid (AA) as an oviposition substrate. However, our observations reveal that this egg-laying preference is a complex process, as it directly opposes an otherwise strong, default behavior of positional avoidance for the same food. We show that 2 distinct sensory modalities detect AA. Attraction to AA-containing food for the purpose of egg-laying relies on the gustatory system, while positional repulsion depends primarily on the olfactory system. Similarly, distinct central brain regions are involved in AA attraction and repulsion. Given this unique situation, in which a single environmental stimulus yields 2 opposing behavioral outputs, we propose that the interaction of egg-laying attraction and positional aversion for AA provides a powerful model for studying how organisms balance competing behavioral drives and integrate signals involved in choice-like processes.

    View Publication Page
    12/29/09 | Preferential ethanol consumption in Drosophila models features of addiction.
    Devineni AV, Heberlein U
    Current Biology. 2009 Dec 29;19(24):2126-32. doi: 10.1016/j.cub.2009.10.070

    Alcohol addiction is a common affliction with a strong genetic component [1]. Although mammalian studies have provided significant insight into the molecular mechanisms underlying ethanol consumption [2], other organisms such as Drosophila melanogaster are better suited for unbiased, forward genetic approaches to identify novel genes. Behavioral responses to ethanol, such as hyperactivity, sedation, and tolerance, are conserved between flies and mammals [3, 4], as are the underlying molecular pathways [5-9]. However, few studies have investigated ethanol self-administration in flies [10]. Here we characterize ethanol consumption and preference in Drosophila. Flies prefer to consume ethanol-containing food over regular food, and this preference increases over time. Flies are attracted to the smell of ethanol, which partially mediates ethanol preference, but are averse to its taste. Preference for consuming ethanol is not entirely explained by attraction to either its sensory or caloric properties. We demonstrate that flies can exhibit features of alcohol addiction. First, flies self-administer ethanol to pharmacologically relevant concentrations. Second, flies will overcome an aversive stimulus in order to consume ethanol. Third, flies rapidly return to high levels of ethanol consumption after a period of imposed abstinence. Thus, ethanol preference in Drosophila provides a new model for studying aspects of addiction.

    View Publication Page
    06/30/10 | Protein Phosphatase 2a and glycogen synthase kinase 3 signaling modulate prepulse inhibition of the acoustic startle response by altering cortical M-Type potassium channel activity.
    Kapfhamer D, Berger KH, Hopf FW, Seif T, Kharazia V, Bonci A, Heberlein U
    The Journal of Neuroscience. 2010 Jun 30;30(26):8830-40. doi: 10.1523/JNEUROSCI.1292-10.2010

    There is considerable interest in the regulation of sensorimotor gating, since deficits in this process could play a critical role in the symptoms of schizophrenia and other psychiatric disorders. Sensorimotor gating is often studied in humans and rodents using the prepulse inhibition of the acoustic startle response (PPI) model, in which an acoustic prepulse suppresses behavioral output to a startle-inducing stimulus. However, the molecular and neural mechanisms underlying PPI are poorly understood. Here, we show that a regulatory pathway involving protein phosphatase 2A (PP2A), glycogen synthase kinase 3 beta (GSK3beta), and their downstream target, the M-type potassium channel, regulates PPI. Mice (Mus musculus) carrying a hypomorphic allele of Ppp2r5delta, encoding a regulatory subunit of PP2A, show attenuated PPI. This PPP2R5delta reduction increases the phosphorylation of GSK3beta at serine 9, which inactivates GSK3beta, indicating that PPP2R5delta positively regulates GSK3beta activity in the brain. Consistently, genetic and pharmacological manipulations that reduce GSK3beta function attenuate PPI. The M-type potassium channel subunit, KCNQ2, is a putative GSK3beta substrate. Genetic reduction of Kcnq2 also reduces PPI, as does systemic inhibition of M-channels with linopirdine. Importantly, both the GSK3 inhibitor 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)1H-pyrrole-2,5-dione (SB216763) and linopirdine reduce PPI when directly infused into the medial prefrontal cortex (mPFC). Whole-cell electrophysiological recordings of mPFC neurons show that SB216763 and linopirdine have similar effects on firing, and GSK3 inhibition occludes the effects of M-channel inhibition. These data support a previously uncharacterized mechanism by which PP2A/GSK3beta signaling regulates M-type potassium channel activity in the mPFC to modulate sensorimotor gating.

    View Publication Page
    10/01/04 | Rapid and chronic: two distinct forms of ethanol tolerance in Drosophila.
    Berger KH, Heberlein U, Moore MS
    Alcoholism, Clinical and Experimental Research. 2004 Oct;28(10):1469-80

    BACKGROUND: Ethanol tolerance, defined as a reduction in the intensity of the effects of ethanol upon continuous or repeated exposure, is a hallmark of alcoholism. Tolerance may develop at the cellular or neural systems levels. The molecular changes underlying ethanol tolerance are not well understood. We therefore explored the utility of Drosophila, with its accessibility to genetic, molecular, and behavioral analyses, as a model organism to study tolerance development in response to different ethanol-exposure regimens.

    METHODS: We describe a new assay that quantifies recovery from ethanol intoxication in Drosophila. Using this recovery assay, we define ethanol pre-exposure paradigms that lead to the development of tolerance. We also use the inebriometer, an assay that measures the onset of intoxication, to study the effects of pharmacological and genetic manipulations on tolerance development.

    RESULTS: We show that flies develop different forms of ethanol tolerance: rapid tolerance, induced by a single short exposure to a high concentration of ethanol, and chronic tolerance, elicited by prolonged exposure to a low concentration of the drug. Neither rapid nor chronic tolerance involves changes in ethanol pharmacokinetics, implying that they represent functional rather than dispositional tolerance. Chronic and rapid tolerance can be distinguished mechanistically: chronic tolerance is disrupted by treatment with the protein synthesis inhibitor cycloheximide, whereas rapid tolerance is resistant to this treatment. Furthermore, rapid and chronic tolerance rely on distinct genetic pathways: a mutant defective for octopamine biosynthesis shows reduced rapid tolerance but normal chronic tolerance.

    CONCLUSIONS: Flies, like mammals, develop tolerance in response to different ethanol-exposure regimens, and this tolerance affects both the onset of and the recovery from acute intoxication. Two forms of tolerance, rapid and chronic, are mechanistically distinct, because they can be dissociated genetically and pharmacologically.

    View Publication Page
    01/16/18 | Repetitive aggressive encounters generate a long-lasting internal state in Drosophila melanogaster males.
    Kim Y, Saver M, Simon J, Kent CF, Shao L, Eddison M, Agrawal P, Texada M, Truman JW, Heberlein U
    Proceedings of the National Academy of Sciences of the United States of America. 2018 Jan 16;115(5):1099-104. doi: 10.1073/pnas.1716612115

    Multiple studies have investigated the mechanisms of aggressive behavior in Drosophila; however, little is known about the effects of chronic fighting experience. Here, we investigated if repeated fighting encounters would induce an internal state that could affect the expression of subsequent behavior. We trained wild-type males to become winners or losers by repeatedly pairing them with hypoaggressive or hyperaggressive opponents, respectively. As described previously, we observed that chronic losers tend to lose subsequent fights, while chronic winners tend to win them. Olfactory conditioning experiments showed that winning is perceived as rewarding, while losing is perceived as aversive. Moreover, the effect of chronic fighting experience generalized to other behaviors, such as gap-crossing and courtship. We propose that in response to repeatedly winning or losing aggressive encounters, male flies form an internal state that displays persistence and generalization; fight outcomes can also have positive or negative valence. Furthermore, we show that the activities of the PPL1-γ1pedc dopaminergic neuron and the MBON-γ1pedc>α/β mushroom body output neuron are required for aversion to an olfactory cue associated with losing fights.

    View Publication Page
    01/01/97 | Retinal morphogenesis in Drosophila: hints from an eye-specific decapentaplegic allele.
    Chanut F, Heberlein U
    Developmental Genetics. 1997;20(3):197-207. doi: 10.1002/(SICI)1520-6408(1997)20:3<197::AID-DVG3>3.0.CO;2-2

    Decapentaplegic (dpp) regulates many aspects of imaginal disc growth and patterning in Drosophila. We have analyzed the phenotype of an eye-specific dpp allele, dppblk, which causes a reduction in the size of the retina due to a loss of ventral ommatidia. Prior to the onset of differentiation, dppblk eye discs are normal regarding size, shape, and ability to express dorsal and ventral markers. However, expression of a dpp-lacZ reporter is reduced at the ventral margin. Additional dorsoventral asymmetry appears during retinal differentiation: the morphogenetic furrow (MF) initiates normally at the posterior tip of the disc, but fails to propagate into the ventral epithelium. This defect can be rescued by increasing dpp expression along the ventral margin by local removal of patched function. We propose that the primary defect in dppblk is an inability to activate dpp expression properly at the ventral margin. This has two consequences: it prevents initiation from the ventral margin, and it renders the ventral epithelium unresponsive to differentiation signals emanating from the MF.

    View Publication Page

    Morphogenesis in the Drosophila retina initiates at the posterior margin of the eye imaginal disc by an unknown mechanism. Upon initiation, a wave of differentiation, its forward edge marked by the morphogenetic furrow (MF), proceeds anteriorly across the disc. Progression of the MF is driven by hedgehog (hh), expressed by differentiating photoreceptor cells. The TGF-beta homolog encoded by decapentaplegic (dpp) is expressed at the disc's posterior margin prior to initiation and in the furrow, under the control of hh, during MF progression. While dpp has been implicated in eye disc growth and morphogenesis, its precise role in retinal differentiation has not been determined. To address the role of dpp in initiation and progression of retinal differentiation we analyzed the consequences of reduced and increased dpp function during eye development. We find that dpp is not only required for normal MF initiation, but is sufficient to induce ectopic initiation of differentiation. Inappropriate initiation is normally inhibited by wingless (wg). Loss of dpp function is accompanied by expansion of wg expression, while increased dpp function leads to loss of wg transcription. In addition, dpp is required to maintain, and sufficient to induce, its own expression along the disc's margins. We postulate that dpp autoregulation and dpp-mediated inhibition of wg expression are required for the coordinated regulation of furrow initiation and progression. Finally, we show that in the later stages of retinal differentiation, reduction of dpp function leads to an arrest in MF progression.

    View Publication Page
    12/01/95 | Role of the morphogenetic furrow in establishing polarity in the Drosophila eye.
    Chanut F, Heberlein U
    Development. 1995 Dec;121(12):4085-94

    The Drosophila retina is a crystalline array of 800 ommatidia whose organization and assembly suggest polarization of the retinal epithelium along anteroposterior and dorsoventral axes. The retina develops by a stepwise process following the posterior-to-anterior progression of the morphogenetic furrow across the eye disc. Ectopic expression of hedgehog or local removal of patched function generates ectopic furrows that can progress in any direction across the disc leaving in their wake differentiating fields of ectopic ommatidia. We have studied the effect of these ectopic furrows on the polarity of ommatidial assembly and rotation. We find that the anteroposterior asymmetry of ommatidial assembly parallels the progression of ectopic furrows, regardless of their direction. In addition, ommatidia developing behind ectopic furrows rotate coordinately, forming equators in various regions of the disc. Interestingly, the expression of a marker normally restricted to the equator is induced in ectopic ommatidial fields. Ectopic equators are stable as they persist to adulthood, where they can coexist with the normal equator. Our results suggest that ectopic furrows can impart polarity to the disc epithelium, regarding the direction of both assembly and rotation of ommatidia. We propose that these processes are polarized as a consequence of furrow propagation, while more global determinants of dorsoventral and anteroposterior polarity may act less directly by determining the site of furrow initiation.

    View Publication Page
    02/01/02 | Rough eye is a gain-of-function allele of amos that disrupts regulation of the proneural gene atonal during Drosophila retinal differentiation.
    Chanut F, Woo K, Pereira S, Donohoe TJ, Chang S, Laverty TR, Jarman AP, Heberlein U
    Genetics. 2002 Feb;160(2):623-35

    The regular organization of the ommatidial lattice in the Drosophila eye originates in the precise regulation of the proneural gene atonal (ato), which is responsible for the specification of the ommatidial founder cells R8. Here we show that Rough eye (Roi), a dominant mutation manifested by severe roughening of the adult eye surface, causes defects in ommatidial assembly and ommatidial spacing. The ommatidial spacing defect can be ascribed to the irregular distribution of R8 cells caused by a disruption of the patterning of ato expression. Disruptions in the recruitment of other photoreceptors and excess Hedgehog production in differentiating cells may further contribute to the defects in ommatidial assembly. Our molecular characterization of the Roi locus demonstrates that it is a gain-of-function mutation of the bHLH gene amos that results from a chromosomal inversion. We show that Roi can rescue the retinal developmental defect of ato1 mutants and speculate that amos substitutes for some of ato's function in the eye or activates a residual function of the ato1 allele.

    View Publication Page
    02/26/09 | Sensory neurons in the Drosophila genital tract regulate female reproductive behavior.
    Häsemeyer M, Yapici N, Heberlein U, Dickson BJ
    Neuron. 2009 Feb 26;61(4):511-8. doi: 10.1016/j.neuron.2009.01.009

    Females of many animal species behave very differently before and after mating. In Drosophila melanogaster, changes in female behavior upon mating are triggered by the sex peptide (SP), a small peptide present in the male's seminal fluid. SP activates a specific receptor, the sex peptide receptor (SPR), which is broadly expressed in the female reproductive tract and nervous system. Here, we pinpoint the action of SPR to a small subset of internal sensory neurons that innervate the female uterus and oviduct. These neurons express both fruitless (fru), a marker for neurons likely to have sex-specific functions, and pickpocket (ppk), a marker for proprioceptive neurons. We show that SPR expression in these fru+ ppk+ neurons is both necessary and sufficient for behavioral changes induced by mating. These neurons project to regions of the central nervous system that have been implicated in the control of reproductive behaviors in Drosophila and other insects.

    View Publication Page