Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

135 Publications

Showing 131-135 of 135 results
Your Criteria:
    05/17/17 | Unraveling cell-to-cell signaling networks with chemical biology.
    Gartner ZJ, Prescher JA, Lavis LD
    Nature Chemical Biology. 2017 May 17;13(6):564-568. doi: 10.1038/nchembio.2391
    02/17/16 | Virginia Orange: A versatile, red-shifted fluorescein scaffold for single- and dual-input fluorogenic probes.
    Grimm JB, Gruber TD, Ortiz G, Brown TA, Lavis LD
    Bioconjugate Chemistry. 2016 Feb 17;27(2):474-80. doi: 10.1021/acs.bioconjchem.5b00566

    Fluorogenic molecules are important tools for biological and biochemical research. The majority of fluorogenic compounds have a simple input-output relationship, where a single chemical input yields a fluorescent output. Development of new systems where multiple inputs converge to yield an optical signal could refine and extend fluorogenic compounds by allowing greater spatiotemporal control over the fluorescent signal. Here, we introduce a new red-shifted fluorescein derivative, Virginia Orange, as an exceptional scaffold for single- and dual-input fluorogenic molecules. Unlike fluorescein, installation of a single masking group on Virginia Orange is sufficient to fully suppress fluorescence, allowing preparation of fluorogenic enzyme substrates with rapid, single-hit kinetics. Virginia Orange can also be masked with two independent moieties; both of these masking groups must be removed to induce fluorescence. This allows facile construction of multi-input fluorogenic probes for sophisticated sensing regimes and genetic targeting of latent fluorophores to specific cellular populations.

    View Publication Page
    12/04/17 | Visualizing long-term single-molecule dynamics in vivo by stochastic protein labeling.
    Liu H, Dong P, Ioannou MS, Li L, Shea J, Pasolli HA, Grimm JB, Rivlin PK, Lavis LD, Koyama M, Liu Z
    Proceedings of the National Academy of Sciences of the United States of America. 2017 Jan 09;115(2):343-8. doi: 10.1073/pnas.1713895115

    Our ability to unambiguously image and track individual molecules in live cells is limited by packing of multiple copies of labeled molecules within the resolution limit. Here we devise a universal genetic strategy to precisely control copy number of fluorescently labeled molecules in a cell. This system has a dynamic titration range of >10,000 fold, enabling sparse labeling of proteins expressed at different abundance levels. Combined with photostable labels, this system extends the duration of automated single-molecule tracking by 2 orders of magnitude. We demonstrate long-term imaging of synaptic vesicle dynamics in cultured neurons as well as in intact zebrafish. We found axon initial segment utilizes a "waterfall" mechanism gating synaptic vesicle transport polarity by promoting anterograde transport processivity. Long-time observation also reveals that transcription factor hops between clustered binding sites in spatially-restricted sub-nuclear regions, suggesting that topological structures in the nucleus shape local gene activities by a sequestering mechanism. This strategy thus greatly expands the spatiotemporal length scales of live-cell single-molecule measurements, enabling new experiments to quantitatively understand complex control of molecular dynamics in vivo.

    View Publication Page
    05/26/23 | Voltage dynamics of dendritic integration and back-propagation in vivo
    J. David Wong-Campos , Pojeong Park , Hunter Davis , Yitong Qi , He Tian , Daniel G. Itkis , Doyeon Kim , Sarah E. Plutkis , Luke Lavis , Adam E. Cohen
    bioRxiv. 2023 May 26:. doi: 10.1101/2023.05.25.542363

    Neurons integrate synaptic inputs within their dendrites and produce spiking outputs, which then propagate down the axon and back into the dendrites where they contribute to plasticity. Mapping the voltage dynamics in dendritic arbors of live animals is crucial for understanding neuronal computation and plasticity rules. Here we combine patterned channelrhodopsin activation with dual-plane structured illumination voltage imaging, for simultaneous perturbation and monitoring of dendritic and somatic voltage in Layer 2/3 pyramidal neurons in anesthetized and awake mice. We examined the integration of synaptic inputs and compared the dynamics of optogenetically evoked, spontaneous, and sensory-evoked back-propagating action potentials (bAPs). Our measurements revealed a broadly shared membrane voltage throughout the dendritic arbor, and few signatures of electrical compartmentalization among synaptic inputs. However, we observed spike rate acceleration-dependent propagation of bAPs into distal dendrites. We propose that this dendritic filtering of bAPs may play a critical role in activity-dependent plasticity.

    View Publication Page
    12/10/18 | Whole-cell, 3D and multi-color STED imaging with exchangeable fluorophores.
    Spahn C, Grimm JB, Lavis LD, Lampe M, Heilemann M
    Nano Letters. 2018 Dec 10;19(1):500-5. doi: 10.1021/acs.nanolett.8b04385

    We demonstrate STED microscopy of whole bacterial and eukaryotic cells using fluorogenic labels that reversibly bind to their target structure. A constant exchange of labels guarantees the removal of photobleached fluorophores and their replacement by intact fluorophores, thereby circumventing bleaching-related limitations of STED super-resolution imaging. We achieve a constant labeling density and demonstrate a fluorescence signal for long and theoretically unlimited acquisition times. Using this concept, we demonstrate whole-cell, 3D, multi-color and live cell STED microscopy.

    View Publication Page