Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

252 Publications

Showing 41-50 of 252 results
Your Criteria:
    02/09/15 | Bidirectional NMDA receptor plasticity controls CA3 output and heterosynaptic metaplasticity.
    Hunt DL, Puente N, Grandes P, Castillo PE
    Nature Neuroscience. 2013 Aug;16(8):1049-59. doi: 10.1038/nn.3461

    NMDA receptors (NMDARs) are classically known as coincidence detectors for the induction of long-term synaptic plasticity and have been implicated in hippocampal CA3 cell-dependent spatial memory functions that likely rely on dynamic cellular ensemble encoding of space. The unique functional properties of both NMDARs and mossy fiber projections to CA3 pyramidal cells place mossy fiber NMDARs in a prime position to influence CA3 ensemble dynamics. By mimicking presynaptic and postsynaptic activity patterns observed in vivo, we found a burst timing-dependent pattern of activity that triggered bidirectional long-term NMDAR plasticity at mossy fiber-CA3 synapses in rat hippocampal slices. This form of plasticity imparts bimodal control of mossy fiber-driven CA3 burst firing and spike temporal fidelity. Moreover, we found that mossy fiber NMDARs mediate heterosynaptic metaplasticity between mossy fiber and associational-commissural synapses. Thus, bidirectional NMDAR plasticity at mossy fiber-CA3 synapses could substantially contribute to the formation, storage and recall of CA3 cell assembly patterns.

    View Publication Page
    Saalfeld LabSinger Lab
    05/28/15 | BigDataViewer: visualization and processing for large image data sets.
    Pietzsch T, Saalfeld S, Preibisch S, Tomancak P
    Nature Methods. 2015 May 28;12(6):481-3. doi: 10.1038/nmeth.3392
    07/15/15 | BigNeuron: Large-scale 3D neuron reconstruction from optical microscopy images.
    Peng H, Hawrylycz M, Roskams J, Hill S, Spruston N, Meijering E, Ascoli GA
    Neuron. 2015 Jul 15;87:252-6. doi: 10.1016/j.neuron.2015.06.036

    Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons.

    Understanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons.

    View Publication Page
    06/03/15 | BlastNeuron for automated comparison, retrieval and clustering of 3D neuron morphologies.
    Wan Y, Long F, Qu L, Xiao H, Hawrylycz M, Myers EW, Peng H
    Neuroinformatics. 2015 Jun 3;13(4):487-99. doi: 10.1007/s12021-015-9272-7

    Characterizing the identity and types of neurons in the brain, as well as their associated function, requires a means of quantifying and comparing 3D neuron morphology. Presently, neuron comparison methods are based on statistics from neuronal morphology such as size and number of branches, which are not fully suitable for detecting local similarities and differences in the detailed structure. We developed BlastNeuron to compare neurons in terms of their global appearance, detailed arborization patterns, and topological similarity. BlastNeuron first compares and clusters 3D neuron reconstructions based on global morphology features and moment invariants, independent of their orientations, sizes, level of reconstruction and other variations. Subsequently, BlastNeuron performs local alignment between any pair of retrieved neurons via a tree-topology driven dynamic programming method. A 3D correspondence map can thus be generated at the resolution of single reconstruction nodes. We applied BlastNeuron to three datasets: (1) 10,000+ neuron reconstructions from a public morphology database, (2) 681 newly and manually reconstructed neurons, and (3) neurons reconstructions produced using several independent reconstruction methods. Our approach was able to accurately and efficiently retrieve morphologically and functionally similar neuron structures from large morphology database, identify the local common structures, and find clusters of neurons that share similarities in both morphology and molecular profiles.

    View Publication Page
    08/22/15 | C/D box sRNA-guided 2'-O-methylation patterns of archaeal rRNA molecules.
    Dennis PP, Tripp V, Lui L, Lowe T, Randau L
    BMC Genomics. 2015 Aug 22;16(1):632. doi: 10.1186/s12864-015-1839-z

    BACKGROUND: In archaea and eukaryotes, ribonucleoprotein complexes containing small C/D box s(no)RNAs use base pair complementarity to target specific sites within ribosomal RNA for 2'-O-ribose methylation. These modifications aid in the folding and stabilization of nascent rRNA molecules and their assembly into ribosomal particles. The genomes of hyperthermophilic archaea encode large numbers of C/D box sRNA genes, suggesting an increased necessity for rRNA stabilization at extreme growth temperatures.

    RESULTS: We have identified the complete sets of C/D box sRNAs from seven archaea using RNA-Seq methodology. In total, 489 C/D box sRNAs were identified, each containing two guide regions. A combination of computational and manual analyses predicts 719 guide interactions with 16S and 23S rRNA molecules. This first pan-archaeal description of guide sequences identifies (i) modified rRNA nucleotides that are frequently conserved between species and (ii) regions within rRNA that are hotspots for 2'-O-methylation. Gene duplication, rearrangement, mutational drift and convergent evolution of sRNA genes and guide sequences were observed. In addition, several C/D box sRNAs were identified that use their two guides to target locations distant in the rRNA sequence but close in the secondary and tertiary structure. We propose that they act as RNA chaperones and facilitate complex folding events between distant sequences.

    CONCLUSIONS: This pan-archaeal analysis of C/D box sRNA guide regions identified conserved patterns of rRNA 2'-O-methylation in archaea. The interaction between the sRNP complexes and the nascent rRNA facilitates proper folding and the methyl modifications stabilize higher order rRNA structure within the assembled ribosome.

    View Publication Page
    Tjian LabSinger LabTranscription Imaging
    08/31/15 | CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.
    Deng W, Shi X, Tjian R, Lionnet T, Singer RH
    Proceedings of the National Academy of Sciences of the United States of America. 2015 Aug 31;112(38):11870-5. doi: 10.1073/pnas.1515692112

    Direct visualization of genomic loci in the 3D nucleus is important for understanding the spatial organization of the genome and its association with gene expression. Various DNA FISH methods have been developed in the past decades, all involving denaturing dsDNA and hybridizing fluorescent nucleic acid probes. Here we report a novel approach that uses in vitro constituted nuclease-deficient clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated caspase 9 (Cas9) complexes as probes to label sequence-specific genomic loci fluorescently without global DNA denaturation (Cas9-mediated fluorescence in situ hybridization, CASFISH). Using fluorescently labeled nuclease-deficient Cas9 (dCas9) protein assembled with various single-guide RNA (sgRNA), we demonstrated rapid and robust labeling of repetitive DNA elements in pericentromere, centromere, G-rich telomere, and coding gene loci. Assembling dCas9 with an array of sgRNAs tiling arbitrary target loci, we were able to visualize nonrepetitive genomic sequences. The dCas9/sgRNA binary complex is stable and binds its target DNA with high affinity, allowing sequential or simultaneous probing of multiple targets. CASFISH assays using differently colored dCas9/sgRNA complexes allow multicolor labeling of target loci in cells. In addition, the CASFISH assay is remarkably rapid under optimal conditions and is applicable for detection in primary tissue sections. This rapid, robust, less disruptive, and cost-effective technology adds a valuable tool for basic research and genetic diagnosis.

    View Publication Page
    Sternson Lab
    09/11/15 | Cell type-specific pharmacology of NMDA receptors using masked MK801.
    Yang Y, Lee P, Sternson SM
    eLife. 2015 Sep 11;4:. doi: 10.7554/eLife.10206

    N-Methyl-D-aspartate receptors (NMDA-Rs) are ion channels that are important for synaptic plasticity, which is involved in learning and drug addiction. We show enzymatic targeting of an NMDA-R antagonist, MK801, to a molecularly defined neuronal population with the cell-type-selectivity of genetic methods and the temporal control of pharmacology. We find that NMDA-Rs on dopamine neurons are necessary for cocaine-induced synaptic potentiation, demonstrating that cell type-specific pharmacology can be used to dissect signaling pathways within complex brain circuits.

    View Publication Page
    Sternson Lab
    09/02/15 | Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss.
    Henry FE, Sugino K, Tozer A, Branco T, Sternson SM
    eLife. 2015 Sep 2;4:. doi: 10.7554/eLife.09800

    Molecular and cellular processes in neurons are critical for sensing and responding to energy deficit states, such as during weight-loss. AGRP neurons are a key hypothalamic population that is activated during energy deficit and increases appetite and weight-gain. Cell type-specific transcriptomics can be used to identify pathways that counteract weight-loss, and here we report high-quality gene expression profiles of AGRP neurons from well-fed and food-deprived young adult mice. For comparison, we also analyzed POMC neurons, an intermingled population that suppresses appetite and body weight. We find that AGRP neurons are considerably more sensitive to energy deficit than POMC neurons. Furthermore, we identify cell type-specific pathways involving endoplasmic reticulum-stress, circadian signaling, ion channels, neuropeptides, and receptors. Combined with methods to validate and manipulate these pathways, this resource greatly expands molecular insight into neuronal regulation of body weight, and may be useful for devising therapeutic strategies for obesity and eating disorders.

    View Publication Page
    04/07/15 | Cellular levels of signaling factors are sensed by β-actin alleles to modulate transcriptional pulse intensity.
    Kalo A, Kanter I, Shraga A, Sheinberger J, Tzemach H, Kinor N, Singer RH, Lionnet T, Shav-Tal Y
    Cell Reports. 2015 Apr 7;11(3):419-32. doi: 10.1016/j.celrep.2015.03.039

    The transcriptional response of β-actin to extra-cellular stimuli is a paradigm for transcription factor complex assembly and regulation. Serum induction leads to a precisely timed pulse of β-actin transcription in the cell population. Actin protein is proposed to be involved in this response, but it is not known whether cellular actin levels affect nuclear β-actin transcription. We perturbed the levels of key signaling factors and examined the effect on the induced transcriptional pulse by following endogenous β-actin alleles in single living cells. Lowering serum response factor (SRF) protein levels leads to loss of pulse integrity, whereas reducing actin protein levels reveals positive feedback regulation, resulting in elevated gene activation and a prolonged transcriptional response. Thus, transcriptional pulse fidelity requires regulated amounts of signaling proteins, and perturbations in factor levels eliminate the physiological response, resulting in either tuning down or exaggeration of the transcriptional pulse.

    View Publication Page
    Jayaraman LabBaker Lab
    09/21/15 | Central neural circuitry mediating courtship song perception in male Drosophila.
    Zhou C, Franconville R, Vaughan AG, Robinett CC, Jayaraman V, Baker BS
    eLife. 2015 Sep 21;4:. doi: 10.7554/eLife.08477

    Animals use acoustic signals across a variety of social behaviors, particularly courtship. In Drosophila, song is detected by antennal mechanosensory neurons and further processed by second-order aPN1/aLN(al) neurons. However, little is known about the central pathways mediating courtship hearing. In this study, we identified a male-specific pathway for courtship hearing via third-order ventrolateral protocerebrum Projection Neuron 1 (vPN1) neurons and fourth-order pC1 neurons. Genetic inactivation of vPN1 or pC1 disrupts song-induced male-chaining behavior. Calcium imaging reveals that vPN1 responds preferentially to pulse song with long inter-pulse intervals (IPIs), while pC1 responses to pulse song closely match the behavioral chaining responses at different IPIs. Moreover, genetic activation of either vPN1 or pC1 induced courtship chaining, mimicking the behavioral response to song. These results outline the aPN1-vPN1-pC1 pathway as a labeled line for the processing and transformation of courtship song in males.

    View Publication Page