Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

88 Publications

Showing 61-70 of 88 results
Your Criteria:
    Truman LabCardona Lab
    06/14/19 | Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae.
    Kohsaka H, Zwart MF, Fushiki A, Fetter RD, Truman JW, Cardona A, Nose A
    Nature Communications. 2019 Jun 14;10(1):2654. doi: 10.1038/s41467-019-10695-y

    Animal locomotion requires spatiotemporally coordinated contraction of muscles throughout the body. Here, we investigate how contractions of antagonistic groups of muscles are intersegmentally coordinated during bidirectional crawling of Drosophila larvae. We identify two pairs of higher-order premotor excitatory interneurons present in each abdominal neuromere that intersegmentally provide feedback to the adjacent neuromere during motor propagation. The two feedback neuron pairs are differentially active during either forward or backward locomotion but commonly target a group of premotor interneurons that together provide excitatory inputs to transverse muscles and inhibitory inputs to the antagonistic longitudinal muscles. Inhibition of either feedback neuron pair compromises contraction of transverse muscles in a direction-specific manner. Our results suggest that the intersegmental feedback neurons coordinate contraction of synergistic muscles by acting as delay circuits representing the phase lag between segments. The identified circuit architecture also shows how bidirectional motor networks could be economically embedded in the nervous system.

    View Publication Page
    01/16/18 | Repetitive aggressive encounters generate a long-lasting internal state in Drosophila melanogaster males.
    Kim Y, Saver M, Simon J, Kent CF, Shao L, Eddison M, Agrawal P, Texada M, Truman JW, Heberlein U
    Proceedings of the National Academy of Sciences of the United States of America. 2018 Jan 16;115(5):1099-104. doi: 10.1073/pnas.1716612115

    Multiple studies have investigated the mechanisms of aggressive behavior in Drosophila; however, little is known about the effects of chronic fighting experience. Here, we investigated if repeated fighting encounters would induce an internal state that could affect the expression of subsequent behavior. We trained wild-type males to become winners or losers by repeatedly pairing them with hypoaggressive or hyperaggressive opponents, respectively. As described previously, we observed that chronic losers tend to lose subsequent fights, while chronic winners tend to win them. Olfactory conditioning experiments showed that winning is perceived as rewarding, while losing is perceived as aversive. Moreover, the effect of chronic fighting experience generalized to other behaviors, such as gap-crossing and courtship. We propose that in response to repeatedly winning or losing aggressive encounters, male flies form an internal state that displays persistence and generalization; fight outcomes can also have positive or negative valence. Furthermore, we show that the activities of the PPL1-γ1pedc dopaminergic neuron and the MBON-γ1pedc>α/β mushroom body output neuron are required for aversion to an olfactory cue associated with losing fights.

    View Publication Page
    01/01/10 | Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster.
    Truman JW, Moats W, Altman J, Marin EC, Williams DW
    Development. 2010 Jan;137(1):53-61. doi: 10.1242/dev.041749

    The secondary neurons generated in the thoracic central nervous system of Drosophila arise from a hemisegmental set of 25 neuronal stem cells, the neuroblasts (NBs). Each NB undergoes repeated asymmetric divisions to produce a series of smaller ganglion mother cells (GMCs), which typically divide once to form two daughter neurons. We find that the two daughters of the GMC consistently have distinct fates. Using both loss-of-function and gain-of-function approaches, we examined the role of Notch signaling in establishing neuronal fates within all of the thoracic secondary lineages. In all cases, the ’A’ (Notch(ON)) sibling assumes one fate and the ’B’ (Notch(OFF)) sibling assumes another, and this relationship holds throughout the neurogenic period, resulting in two major neuronal classes: the A and B hemilineages. Apparent monotypic lineages typically result from the death of one sibling throughout the lineage, resulting in a single, surviving hemilineage. Projection neurons are predominantly from the B hemilineages, whereas local interneurons are typically from A hemilineages. Although sibling fate is dependent on Notch signaling, it is not necessarily dependent on numb, a gene classically involved in biasing Notch activation. When Numb was removed at the start of larval neurogenesis, both A and B hemilineages were still generated, but by the start of the third larval instar, the removal of Numb resulted in all neurons assuming the A fate. The need for Numb to direct Notch signaling correlated with a decrease in NB cell cycle time and may be a means for coping with multiple sibling pairs simultaneously undergoing fate decisions.

    View Publication Page
    05/06/15 | Role of the subesophageal zone in sensorimotor control of orientation in Drosophila larva.
    Tastekin I, Riedl J, Schilling-Kurz V, Gomez-Marin A, Truman JW, Louis M
    Current Biology. 2015 May 6;25(11):1448-60. doi: 10.1016/j.cub.2015.04.016

    Chemotaxis is a powerful paradigm to investigate how nervous systems represent and integrate changes in sensory signals to direct navigational decisions. In the Drosophila melanogaster larva, chemotaxis mainly consists of an alternation of distinct behavioral modes: runs and directed turns. During locomotion, turns are triggered by the integration of temporal changes in the intensity of the stimulus. Upon completion of a turning maneuver, the direction of motion is typically realigned toward the odor gradient. While the anatomy of the peripheral olfactory circuits and the locomotor system of the larva are reasonably well documented, the neural circuits connecting the sensory neurons to the motor neurons remain unknown. We combined a loss-of-function behavioral screen with optogenetics-based clonal gain-of-function manipulations to identify neurons that are necessary and sufficient for the initiation of reorientation maneuvers in odor gradients. Our results indicate that a small subset of neurons residing in the subesophageal zone controls the rate of transition from runs to turns-a premotor function compatible with previous observations made in other invertebrates. After having shown that this function pertains to the processing of inputs from different sensory modalities (olfaction, vision, thermosensation), we conclude that the subesophageal zone operates as a general premotor center that regulates the selection of different behavioral programs based on the integration of sensory stimuli. The present analysis paves the way for a systematic investigation of the neural computations underlying action selection in a miniature brain amenable to genetic manipulations.

    View Publication Page
    Truman LabCardona Lab
    07/12/16 | Selective inhibition mediates the sequential recruitment of motor pools.
    Zwart MF, Pulver SR, Truman JW, Fushiki A, Cardona A, Landgraf M
    Neuron. 2016 Jul 12;91(3):615-28. doi: 10.1016/j.neuron.2016.06.031

    Locomotor systems generate diverse motor patterns to produce the movements underlying behavior, requiring that motor neurons be recruited at various phases of the locomotor cycle. Reciprocal inhibition produces alternating motor patterns; however, the mechanisms that generate other phasic relationships between intrasegmental motor pools are unknown. Here, we investigate one such motor pattern in the Drosophila larva, using a multidisciplinary approach including electrophysiology and ssTEM-based circuit reconstruction. We find that two motor pools that are sequentially recruited during locomotion have identical excitable properties. In contrast, they receive input from divergent premotor circuits. We find that this motor pattern is not orchestrated by differential excitatory input but by a GABAergic interneuron acting as a delay line to the later-recruited motor pool. Our findings show how a motor pattern is generated as a function of the modular organization of locomotor networks through segregation of inhibition, a potentially general mechanism for sequential motor patterns.

    View Publication Page
    Truman LabZlatic LabCardona Lab
    11/22/18 | Sensorimotor pathway controlling stopping behavior during chemotaxis in the larva.
    Tastekin I, Khandelwal A, Tadres D, Fessner ND, Truman JW, Zlatic M, Cardona A, Louis M
    eLife. 2018 Nov 22;7:. doi: 10.7554/eLife.38740

    Sensory navigation results from coordinated transitions between distinct behavioral programs. During chemotaxis in the larva, the detection of positive odor gradients extends runs while negative gradients promote stops and turns. This algorithm represents a foundation for the control of sensory navigation across phyla. In the present work, we identified an olfactory descending neuron, PDM-DN, which plays a pivotal role in the organization of stops and turns in response to the detection of graded changes in odor concentrations. Artificial activation of this descending neuron induces deterministic stops followed by the initiation of turning maneuvers through head casts. Using electron microscopy, we reconstructed the main pathway that connects the PDM-DN neuron to the peripheral olfactory system and to the pre-motor circuit responsible for the actuation of forward peristalsis. Our results set the stage for a detailed mechanistic analysis of the sensorimotor conversion of graded olfactory inputs into action selection to perform goal-oriented navigation.

    View Publication Page
    06/01/23 | Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster
    Erica Ehrhardt , Samuel C Whitehead , Shigehiro Namiki , Ryo Minegishi , Igor Siwanowicz , Kai Feng , Hideo Otsuna , FlyLight Project Team , Geoffrey W Meissner , David Stern , Jim Truman , David Shepherd , Michael H. Dickinson , Kei Ito , Barry J Dickson , Itai Cohen , Gwyneth M Card , Wyatt Korff
    bioRxiv. 2023 Jun 01:. doi: 10.1101/2023.05.31.542897

    To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their function. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse driver lines targeting 198 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neural circuits and connectivity of premotor circuits while linking them to behavioral outputs.

    View Publication Page
    Fetter LabTruman LabCardona Lab
    11/15/16 | Synaptic transmission parallels neuromodulation in a central food-intake circuit.
    Schlegel P, Texada MJ, Miroschnikow A, Schoofs A, Hückesfeld S, Peters M, Schneider-Mizell CM, Lacin H, Li F, Fetter RD, Truman JW, Cardona A, Pankratz MJ
    eLife. 2016 Nov 15:. doi: 10.7554/eLife.16799

    NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level.

    View Publication Page
    Riddiford LabTruman Lab
    11/02/09 | Temporal patterns of broad isoform expression during the development of neuronal lineages in Drosophila.
    Zhou B, Williams DW, Altman J, Riddiford LM, Truman JW
    Neural Development. 2009 Nov 2;4:39. doi: 10.1186/1749-8104-4-39

    During the development of the central nervous system (CNS) of Drosophila, neuronal stem cells, the neuroblasts (NBs), first generate a set of highly diverse neurons, the primary neurons that mature to control larval behavior, and then more homogeneous sets of neurons that show delayed maturation and are primarily used in the adult. These latter, ’secondary’ neurons show a complex pattern of expression of broad, which encodes a transcription factor usually associated with metamorphosis, where it acts as a key regulator in the transitions from larva and pupa.

    View Publication Page
    12/12/11 | The BTB/POZ zinc finger protein Broad-Z3 promotes dendritic outgrowth during metamorphic remodeling of the peripheral stretch receptor dbd.
    Scott JA, Williams DW, Truman JW
    Neural Development. 2011 Dec 12;6:39. doi: 10.1186/1749-8104-6-39

    Various members of the family of BTB/POZ zinc-finger transcription factors influence patterns of dendritic branching. One such member, Broad, is notable because its BrZ3 isoform is widely expressed in Drosophila in immature neurons around the time of arbor outgrowth. We used the metamorphic remodeling of an identified sensory neuron, the dorsal bipolar dendrite sensory neuron (dbd), to examine the effects of BrZ3 expression on the extent and pattern of dendrite growth during metamorphosis.

    View Publication Page