Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

190 Publications

Showing 1-10 of 190 results
Your Criteria:
    12/27/11 | Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules.
    Burnette DT, Sengupta P, Dai Y, Lippincott-Schwartz J, Kachar B
    Proceedings of the National Academy of Sciences of the United States of America. 2011 Dec 27;108(52):21081-6. doi: 10.1073/pnas.1117430109

    Superresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on photoactivated proteins or photoswitching dyes, respectively, which makes them technically challenging. We present a simple and practical way of producing point localization-based superresolution images that does not require photoactivatable or photoswitching probes. Called bleaching/blinking assisted localization microscopy (BaLM), the technique relies on the intrinsic bleaching and blinking behaviors characteristic of all commonly used fluorescent probes. To detect single fluorophores, we simply acquire a stream of fluorescence images. Fluorophore bleach or blink-off events are detected by subtracting from each image of the series the subsequent image. Similarly, blink-on events are detected by subtracting from each frame the previous one. After image subtractions, fluorescence emission signals from single fluorophores are identified and the localizations are determined by fitting the fluorescence intensity distribution with a theoretical Gaussian. We also show that BaLM works with a spectrum of fluorescent molecules in the same sample. Thus, BaLM extends single molecule-based superresolution localization to samples labeled with multiple conventional fluorescent probes.

    View Publication Page
    Singer Lab
    12/23/11 | Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast.
    Trcek T, Larson DR, Moldón A, Query CC, Singer RH
    Cell. 2011 Dec 23;147(7):1484-97. doi: 10.1016/j.cell.2011.11.051

    Messenger RNA decay measurements are typically performed on a population of cells. However, this approach cannot reveal sufficient complexity to provide information on mechanisms that may regulate mRNA degradation, possibly on short timescales. To address this deficiency, we measured cell cycle-regulated decay in single yeast cells using single-molecule FISH. We found that two genes responsible for mitotic progression, SWI5 and CLB2, exhibit a mitosis-dependent mRNA stability switch. Their transcripts are stable until mitosis, when a precipitous decay eliminates the mRNA complement, preventing carryover into the next cycle. Remarkably, the specificity and timing of decay is entirely regulated by their promoter, independent of specific cis mRNA sequences. The mitotic exit network protein Dbf2p binds to SWI5 and CLB2 mRNAs cotranscriptionally and regulates their decay. This work reveals the promoter-dependent control of mRNA stability, a regulatory mechanism that could be employed by a variety of mRNAs and organisms.

    View Publication Page
    Magee Lab
    12/22/11 | Observations on clustered synaptic plasticity and highly structured input patterns.
    Magee JC
    Neuron. 2011 Dec 22;72(6):887-8. doi: 10.1016/j.neuron.2011.12.009

    In this issue of Neuron, Makino and Malinow and Kleindienst et al. present evidence of a behaviorally induced form of synaptic plasticity that would encourage the development of fine-scale structured input patterns and the binding of features within single neurons.

    View Publication Page
    12/19/11 | Insulin attenuates the acquisition and expression of ethanol-induced locomotor sensitization in DBA/2J mice.
    Kliethermes CL, Heberlein U
    Life Sciences. 2011 Dec 19;89(25-26):968-74. doi: 10.1016/j.lfs.2011.10.011

    AIM: Ethanol-induced locomotor sensitization is a behavioral manifestation of physiological responses to repeated ethanol exposures. While ethanol exerts direct effects on multiple neurotransmitter systems in the brain, ethanol-induced changes in metabolic state, including acute hyperglycemia and inhibition of insulin signaling, also have plausible roles in the expression of ethanol-related behaviors through direct and indirect effects on brain function. The current experiments examined whether insulin administration or the resultant hypoglycemia might attenuate the development of sensitization to the locomotor stimulant effect of ethanol.

    MAIN METHODS: Male and female DBA/2J mice received daily injections of 5 or 10 IU/kg insulin before or after a stimulating dose of ethanol and subsequent testing in an automated activity monitor. Blood glucose levels were determined upon the completion of the experiments.

    KEY FINDINGS: Insulin injected prior to ethanol blunted the acute stimulant response as well as the acquisition and expression of locomotor sensitization, while insulin given after ethanol did not affect the development of the sensitized response. In a separate experiment, mice given glucose concurrently with insulin developed ethanol-induced locomotor sensitization normally.

    SIGNIFICANCE: These experiments suggest that insulin attenuates the development of ethanol-induced locomotor sensitization, and that blood glucose levels can largely account for this effect. Further studies of the role of ethanol-induced metabolic states should provide novel information on the expression of ethanol-related behaviors.

    View Publication Page
    12/17/11 | Learning to Agglomerate Superpixel Hierarchies
    Viren Jain , Srinivas C. Turaga , K Briggman , Moritz N. Helmstaedter , Winfried Denk , H. S. Seung
    Advances in Neural Information Processing Systems 24 (NIPS 2011). 12/2011;24:

    An agglomerative clustering algorithm merges the most similar pair of clusters at every iteration. The function that evaluates similarity is traditionally hand- designed, but there has been recent interest in supervised or semisupervised settings in which ground-truth clustered data is available for training. Here we show how to train a similarity function by regarding it as the action-value function of a reinforcement learning problem. We apply this general method to segment images by clustering superpixels, an application that we call Learning to Agglomerate Superpixel Hierarchies (LASH). When applied to a challenging dataset of brain images from serial electron microscopy, LASH dramatically improved segmentation accuracy when clustering supervoxels generated by state of the boundary detection algorithms. The naive strategy of directly training only supervoxel similarities and applying single linkage clustering produced less improvement.

    View Publication Page
    12/16/11 | Synthesis of rhodamines from fluoresceins using Pd-catalyzed C-N cross-coupling.
    Grimm JB, Lavis LD
    Organic Letters. 2011 Dec 16;13(24):6354-7. doi: 10.1021/ol202618t

    A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N’-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C-N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores.

    View Publication Page
    12/12/11 | The BTB/POZ zinc finger protein Broad-Z3 promotes dendritic outgrowth during metamorphic remodeling of the peripheral stretch receptor dbd.
    Scott JA, Williams DW, Truman JW
    Neural Development. 2011 Dec 12;6:39. doi: 10.1186/1749-8104-6-39

    Various members of the family of BTB/POZ zinc-finger transcription factors influence patterns of dendritic branching. One such member, Broad, is notable because its BrZ3 isoform is widely expressed in Drosophila in immature neurons around the time of arbor outgrowth. We used the metamorphic remodeling of an identified sensory neuron, the dorsal bipolar dendrite sensory neuron (dbd), to examine the effects of BrZ3 expression on the extent and pattern of dendrite growth during metamorphosis.

    View Publication Page
    Singer Lab
    12/09/11 | A date with telomerase: pick you up at S phase.
    Hocine S, Singer RH
    Molecular Cell. 2011 Dec 9;44(5):685-6. doi: 10.1016/j.molcel.2011.11.013

    Using the MS2 system for labeling mRNA, in this issue, Gallardo et al. (2011) find that telomere lengthening depends on a stable accumulation of multiple telomerase complexes in late S phase and that this process is temporally regulated by Rif1/2 proteins.

    View Publication Page
    Fetter Lab
    12/08/11 | Glial-derived prodegenerative signaling in the Drosophila neuromuscular system.
    Keller LC, Cheng L, Locke CJ, Müller M, Fetter RD, Davis GW
    Neuron. 2011 Dec 8;72(5):760-75. doi: 10.1016/j.neuron.2011.09.031

    We provide evidence for a prodegenerative, glial-derived signaling framework in the Drosophila neuromuscular system that includes caspase and mitochondria-dependent signaling. We demonstrate that Drosophila TNF-α (eiger) is expressed in a subset of peripheral glia, and the TNF-α receptor (TNFR), Wengen, is expressed in motoneurons. NMJ degeneration caused by disruption of the spectrin/ankyrin skeleton is suppressed by an eiger mutation or by eiger knockdown within a subset of peripheral glia. Loss of wengen in motoneurons causes a similar suppression providing evidence for glial-derived prodegenerative TNF-α signaling. Neither JNK nor NFκβ is required for prodegenerative signaling. However, we provide evidence for the involvement of both an initiator and effector caspase, Dronc and Dcp-1, and mitochondrial-dependent signaling. Mutations that deplete the axon and nerve terminal of mitochondria suppress degeneration as do mutations in Drosophila Bcl-2 (debcl), a mitochondria-associated protein, and Apaf-1 (dark), which links mitochondrial signaling with caspase activity in other systems.

    View Publication Page
    Eddy/Rivas Lab
    12/07/11 | Phosphorylation at the interface.
    Davis FP
    Structure . 2011 Dec 7;19:1726-7. doi: 10.1016/j.str.2011.11.006

    Proteomic studies have identified thousands of eukaryotic phosphorylation sites (phosphosites), but few are functionally characterized. Nishi et al., in this issue of Structure, characterize phosphosites at protein-protein interfaces and estimate the effect of their phosphorylation on interaction affinity, by combining proteomics data with protein structures.

    View Publication Page