Filter
Associated Lab
- Ahrens Lab (1) Apply Ahrens Lab filter
- Aso Lab (1) Apply Aso Lab filter
- Baker Lab (3) Apply Baker Lab filter
- Betzig Lab (7) Apply Betzig Lab filter
- Bock Lab (2) Apply Bock Lab filter
- Branson Lab (1) Apply Branson Lab filter
- Cardona Lab (1) Apply Cardona Lab filter
- Cui Lab (3) Apply Cui Lab filter
- Dickson Lab (2) Apply Dickson Lab filter
- Druckmann Lab (1) Apply Druckmann Lab filter
- Dudman Lab (1) Apply Dudman Lab filter
- Eddy/Rivas Lab (5) Apply Eddy/Rivas Lab filter
- Fetter Lab (4) Apply Fetter Lab filter
- Fitzgerald Lab (1) Apply Fitzgerald Lab filter
- Gonen Lab (5) Apply Gonen Lab filter
- Grigorieff Lab (6) Apply Grigorieff Lab filter
- Heberlein Lab (12) Apply Heberlein Lab filter
- Hermundstad Lab (1) Apply Hermundstad Lab filter
- Hess Lab (2) Apply Hess Lab filter
- Jayaraman Lab (2) Apply Jayaraman Lab filter
- Ji Lab (2) Apply Ji Lab filter
- Kainmueller Lab (1) Apply Kainmueller Lab filter
- Keller Lab (4) Apply Keller Lab filter
- Lavis Lab (5) Apply Lavis Lab filter
- Lee (Albert) Lab (1) Apply Lee (Albert) Lab filter
- Leonardo Lab (2) Apply Leonardo Lab filter
- Lippincott-Schwartz Lab (18) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (1) Apply Liu (Zhe) Lab filter
- Looger Lab (7) Apply Looger Lab filter
- Magee Lab (1) Apply Magee Lab filter
- Menon Lab (3) Apply Menon Lab filter
- Murphy Lab (1) Apply Murphy Lab filter
- Pastalkova Lab (1) Apply Pastalkova Lab filter
- Pavlopoulos Lab (2) Apply Pavlopoulos Lab filter
- Reiser Lab (2) Apply Reiser Lab filter
- Riddiford Lab (1) Apply Riddiford Lab filter
- Romani Lab (1) Apply Romani Lab filter
- Rubin Lab (4) Apply Rubin Lab filter
- Satou Lab (3) Apply Satou Lab filter
- Scheffer Lab (2) Apply Scheffer Lab filter
- Schreiter Lab (3) Apply Schreiter Lab filter
- Sgro Lab (2) Apply Sgro Lab filter
- Simpson Lab (3) Apply Simpson Lab filter
- Singer Lab (10) Apply Singer Lab filter
- Spruston Lab (1) Apply Spruston Lab filter
- Stern Lab (4) Apply Stern Lab filter
- Sternson Lab (6) Apply Sternson Lab filter
- Svoboda Lab (7) Apply Svoboda Lab filter
- Tjian Lab (4) Apply Tjian Lab filter
- Truman Lab (1) Apply Truman Lab filter
- Turaga Lab (1) Apply Turaga Lab filter
- Turner Lab (2) Apply Turner Lab filter
- Zlatic Lab (1) Apply Zlatic Lab filter
- Zuker Lab (3) Apply Zuker Lab filter
Associated Project Team
Publication Date
- December 2011 (22) Apply December 2011 filter
- November 2011 (15) Apply November 2011 filter
- October 2011 (14) Apply October 2011 filter
- September 2011 (17) Apply September 2011 filter
- August 2011 (14) Apply August 2011 filter
- July 2011 (10) Apply July 2011 filter
- June 2011 (17) Apply June 2011 filter
- May 2011 (13) Apply May 2011 filter
- April 2011 (11) Apply April 2011 filter
- March 2011 (14) Apply March 2011 filter
- February 2011 (16) Apply February 2011 filter
- January 2011 (27) Apply January 2011 filter
- Remove 2011 filter 2011
Type of Publication
190 Publications
Showing 1-10 of 190 resultsSuperresolution imaging techniques based on the precise localization of single molecules, such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), achieve high resolution by fitting images of single fluorescent molecules with a theoretical Gaussian to localize them with a precision on the order of tens of nanometers. PALM/STORM rely on photoactivated proteins or photoswitching dyes, respectively, which makes them technically challenging. We present a simple and practical way of producing point localization-based superresolution images that does not require photoactivatable or photoswitching probes. Called bleaching/blinking assisted localization microscopy (BaLM), the technique relies on the intrinsic bleaching and blinking behaviors characteristic of all commonly used fluorescent probes. To detect single fluorophores, we simply acquire a stream of fluorescence images. Fluorophore bleach or blink-off events are detected by subtracting from each image of the series the subsequent image. Similarly, blink-on events are detected by subtracting from each frame the previous one. After image subtractions, fluorescence emission signals from single fluorophores are identified and the localizations are determined by fitting the fluorescence intensity distribution with a theoretical Gaussian. We also show that BaLM works with a spectrum of fluorescent molecules in the same sample. Thus, BaLM extends single molecule-based superresolution localization to samples labeled with multiple conventional fluorescent probes.
Messenger RNA decay measurements are typically performed on a population of cells. However, this approach cannot reveal sufficient complexity to provide information on mechanisms that may regulate mRNA degradation, possibly on short timescales. To address this deficiency, we measured cell cycle-regulated decay in single yeast cells using single-molecule FISH. We found that two genes responsible for mitotic progression, SWI5 and CLB2, exhibit a mitosis-dependent mRNA stability switch. Their transcripts are stable until mitosis, when a precipitous decay eliminates the mRNA complement, preventing carryover into the next cycle. Remarkably, the specificity and timing of decay is entirely regulated by their promoter, independent of specific cis mRNA sequences. The mitotic exit network protein Dbf2p binds to SWI5 and CLB2 mRNAs cotranscriptionally and regulates their decay. This work reveals the promoter-dependent control of mRNA stability, a regulatory mechanism that could be employed by a variety of mRNAs and organisms.
In this issue of Neuron, Makino and Malinow and Kleindienst et al. present evidence of a behaviorally induced form of synaptic plasticity that would encourage the development of fine-scale structured input patterns and the binding of features within single neurons.
AIM: Ethanol-induced locomotor sensitization is a behavioral manifestation of physiological responses to repeated ethanol exposures. While ethanol exerts direct effects on multiple neurotransmitter systems in the brain, ethanol-induced changes in metabolic state, including acute hyperglycemia and inhibition of insulin signaling, also have plausible roles in the expression of ethanol-related behaviors through direct and indirect effects on brain function. The current experiments examined whether insulin administration or the resultant hypoglycemia might attenuate the development of sensitization to the locomotor stimulant effect of ethanol. MAIN METHODS: Male and female DBA/2J mice received daily injections of 5 or 10 IU/kg insulin before or after a stimulating dose of ethanol and subsequent testing in an automated activity monitor. Blood glucose levels were determined upon the completion of the experiments. KEY FINDINGS: Insulin injected prior to ethanol blunted the acute stimulant response as well as the acquisition and expression of locomotor sensitization, while insulin given after ethanol did not affect the development of the sensitized response. In a separate experiment, mice given glucose concurrently with insulin developed ethanol-induced locomotor sensitization normally. SIGNIFICANCE: These experiments suggest that insulin attenuates the development of ethanol-induced locomotor sensitization, and that blood glucose levels can largely account for this effect. Further studies of the role of ethanol-induced metabolic states should provide novel information on the expression of ethanol-related behaviors.
An agglomerative clustering algorithm merges the most similar pair of clusters at every iteration. The function that evaluates similarity is traditionally hand- designed, but there has been recent interest in supervised or semisupervised settings in which ground-truth clustered data is available for training. Here we show how to train a similarity function by regarding it as the action-value function of a reinforcement learning problem. We apply this general method to segment images by clustering superpixels, an application that we call Learning to Agglomerate Superpixel Hierarchies (LASH). When applied to a challenging dataset of brain images from serial electron microscopy, LASH dramatically improved segmentation accuracy when clustering supervoxels generated by state of the boundary detection algorithms. The naive strategy of directly training only supervoxel similarities and applying single linkage clustering produced less improvement.
A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N’-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C-N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores.
Various members of the family of BTB/POZ zinc-finger transcription factors influence patterns of dendritic branching. One such member, Broad, is notable because its BrZ3 isoform is widely expressed in Drosophila in immature neurons around the time of arbor outgrowth. We used the metamorphic remodeling of an identified sensory neuron, the dorsal bipolar dendrite sensory neuron (dbd), to examine the effects of BrZ3 expression on the extent and pattern of dendrite growth during metamorphosis.
Using the MS2 system for labeling mRNA, in this issue, Gallardo et al. (2011) find that telomere lengthening depends on a stable accumulation of multiple telomerase complexes in late S phase and that this process is temporally regulated by Rif1/2 proteins.
We provide evidence for a prodegenerative, glial-derived signaling framework in the Drosophila neuromuscular system that includes caspase and mitochondria-dependent signaling. We demonstrate that Drosophila TNF-α (eiger) is expressed in a subset of peripheral glia, and the TNF-α receptor (TNFR), Wengen, is expressed in motoneurons. NMJ degeneration caused by disruption of the spectrin/ankyrin skeleton is suppressed by an eiger mutation or by eiger knockdown within a subset of peripheral glia. Loss of wengen in motoneurons causes a similar suppression providing evidence for glial-derived prodegenerative TNF-α signaling. Neither JNK nor NFκβ is required for prodegenerative signaling. However, we provide evidence for the involvement of both an initiator and effector caspase, Dronc and Dcp-1, and mitochondrial-dependent signaling. Mutations that deplete the axon and nerve terminal of mitochondria suppress degeneration as do mutations in Drosophila Bcl-2 (debcl), a mitochondria-associated protein, and Apaf-1 (dark), which links mitochondrial signaling with caspase activity in other systems.
Proteomic studies have identified thousands of eukaryotic phosphorylation sites (phosphosites), but few are functionally characterized. Nishi et al., in this issue of Structure, characterize phosphosites at protein-protein interfaces and estimate the effect of their phosphorylation on interaction affinity, by combining proteomics data with protein structures.