Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

188 Publications

Showing 31-40 of 188 results
Your Criteria:
    Looger LabSchreiter Lab
    11/01/11 | A genetically encoded, high-signal-to-noise maltose sensor.
    Marvin JS, Schreiter ER, Echevarría IM, Looger LL
    Proteins. 2011 Nov;79:3025-36. doi: 10.1002/prot.23118

    We describe the generation of a family of high-signal-to-noise single-wavelength genetically encoded indicators for maltose. This was achieved by insertion of circularly permuted fluorescent proteins into a bacterial periplasmic binding protein (PBP), Escherichia coli maltodextrin-binding protein, resulting in a four-color family of maltose indicators. The sensors were iteratively optimized to have sufficient brightness and maltose-dependent fluorescence increases for imaging, under both one- and two-photon illumination. We demonstrate that maltose affinity of the sensors can be tuned in a fashion largely independent of the fluorescent readout mechanism. Using literature mutations, the binding specificity could be altered to moderate sucrose preference, but with a significant loss of affinity. We use the soluble sensors in individual E. coli bacteria to observe rapid maltose transport across the plasma membrane, and membrane fusion versions of the sensors on mammalian cells to visualize the addition of maltose to extracellular media. The PBP superfamily includes scaffolds specific for a number of analytes whose visualization would be critical to the reverse engineering of complex systems such as neural networks, biosynthetic pathways, and signal transduction cascades. We expect the methodology outlined here to be useful in the development of indicators for many such analytes.

    View Publication Page
    11/01/11 | Cellular mechanism of bile acid-accelerated hepatocyte polarity.
    Fu D, Lippincott-Schwartz J, Arias IM
    Small GTPases. 2011 Nov 1;2(6):314-317. doi: 10.4161/sgtp.18087

    We recently discovered that the major mammalian bile acid, taurocholate, accelerated polarity in primary rat hepatocytes. Taurocholate increased cellular cAMP and signals through an Epac-Rap1-MEK-LKB1-AMPK pathway for its polarity effect. This review discusses possible mechanisms for how taurocholate affects different cell polarity factors, particularly AMPK, and thereby regulates events that generate polarity. These include tight junction formation, apical trafficking, recycling endosome dynamics, and cytoskeleton rearrangement. We also discuss whether the effects of taurocholate are mediated by other LKB1 downstream kinases, such as Par1 and NUAK1.

    View Publication Page
    Menon Lab
    11/01/11 | Frozen tissue can provide reproducible proteomic results of subcellular fractionation.
    Lim J, Menon V, Bitzer M, Miller LM, Madrid-Aliste C, Weiss LM, Fiser A, Angeletti RH
    Analytical biochemistry. 2011 Nov 1;418(1):78-84. doi: 10.1016/j.ab.2011.06.045

    Differential detergent fractionation (DDF) is frequently used to partition fresh cells and tissues into distinct compartments. We have tested whether DDF can reproducibly extract and fractionate cellular protein components from frozen tissues. Frozen kidneys were sequentially extracted with three different buffer systems. Analysis of the three fractions with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 1693 proteins, some of which were common to all fractions and others of which were unique to specific fractions. Normalized spectral index (SI(N)) values obtained from these data were compared to evaluate both the reproducibility of the method and the efficiency of enrichment. SI(N) values between replicate fractions demonstrated a high correlation, confirming the reproducibility of the method. Correlation coefficients across the three fractions were significantly lower than those for the replicates, supporting the capability of DDF to differentially fractionate proteins into separate compartments. Subcellular annotation of the proteins identified in each fraction demonstrated a significant enrichment of cytoplasmic, cell membrane, and nuclear proteins in the three respective buffer system fractions. We conclude that DDF can be applied to frozen tissue to generate reproducible proteome coverage discriminating subcellular compartments. This demonstrates the feasibility of analyzing cellular compartment-specific proteins in archived tissue samples with the simple DDF method.

    View Publication Page
    11/01/11 | Fuse or die: Shaping mitochondrial fate during starvation.
    Rambold AS, Kostelecky B, Lippincott-Schwartz J
    Communicative & integrative biology. 2011 Nov 1;4(6):752-4

    Mitochondria continuously change their shape and thereby influence different cellular processes like cell death or development. Recently, we showed that during starvation mitochondria fuse into a highly connected network. The change in mitochondrial shape was dependent on inactivation of the fission protein Drp1, through targeting of two different phosphorylation sites. This rapid inhibition of mitochondrial fission led to unopposed fusion, protecting mitochondria from starvation-induced degradation and enabling the cell to survive nutrient scarce conditions.

    View Publication Page
    11/01/11 | Preparation of cuticles from feeding Drosophila larvae.
    Stern DL, Sucena E
    Cold Spring Harb Protoc. 2011 Nov;2011(11):1394-8. doi: 10.1101/pdb.prot066498

    The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. Studies of the Drosophila cuticle have focused mainly on first-instar larvae and adult cuticular morphology. Although the cuticles of second- and third-instar larvae are strikingly different from those of the first instar, these differences have been poorly studied. This protocol describes three methods for preparing cuticles from fed larvae. One commonly used procedure involves manually pricking the larvae. A simpler method for preparing larval cuticles is to burst the larvae once they have been mounted. This method is used for first- and second-instar larvae and does not require pricking; it removes the gut contents by "popping" the rear of the embryo using pressure from the coverslip. If just the right amount of medium is used, the coverslip will be pulled toward the slide, applying pressure on the samples. The larvae usually burst from their posterior ends. Also presented is an alternative procedure designed specifically for the use with third-instar larvae, although the "pricking" method can be used at this stage.

    View Publication Page
    11/01/11 | Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination.
    Milkie DE, Betzig E, Ji N
    Optics Letters. 2011 Nov 1;36(21):4206-8. doi: 10.1364/OL.36.004206

    Optical aberrations deteriorate the performance of microscopes. Adaptive optics can be used to improve imaging performance via wavefront shaping. Here, we demonstrate a pupil-segmentation based adaptive optical approach with full-pupil illumination. When implemented in a two-photon fluorescence microscope, it recovers diffraction-limited performance and improves imaging signal and resolution.

    View Publication Page
    11/01/11 | The structure, molecular dynamics, and energetics of centrin-melittin complex.
    Sosa LD, Alfaro E, Santiago J, Narváez D, Rosado MC, Rodríguez A, Gómez AM, Schreiter ER, Pastrana-Ríos B
    Proteins. 2011 Nov;79(11):3132-43. doi: 10.1002/prot.23142

    Centrin is a calcium binding protein (CaBP) belonging to the EF-hand superfamily. As with other proteins within this family, centrin is a calcium sensor with multiple biological target proteins. We chose to study Chlamydomonas reinhardtii centrin (Crcen) and its interaction with melittin (MLT) as a model for CaBP complexes due to its amphipathic properties. Our goal was to determine the molecular interactions that lead to centrin-MLT complex formation, their relative stability, and the conformational changes associated with the interaction, when compared to the single components. For this, we determined the thermodynamic parameters that define Crcen-MLT complex formation. Two-dimensional infrared (2D IR) correlation spectroscopy were used to study the amide I', I'*, and side chain bands for (13)C-Crcen, MLT, and the (13)C-Crcen-MLT complex. This approach resulted in the determination of MLT's increased helicity, while centrin was stabilized within the complex. Herein we provide the first complete molecular description of centrin-MLT complex formation and the dissociation process. Also, discussed is the first structure of a CaBP-MLT complex by X-ray crystallography, which shows that MLT has a different binding orientation than previously characterized centrin-bound peptides. Finally, all of the experimental results presented herein are consistent with centrin maintaining an extended conformation while interacting with MLT. The molecular implications of these results are: (1) the recognition of hydrophobic contacts as requirements for initial binding, (2) minimum electrostatic interactions within the C-terminal end of the peptide, and (3) van der Waals interactions within MLTs N-terminal end are required for complex formation.

    View Publication Page
    Simpson Lab
    10/20/11 | Genetic manipulation of genes and cells in the nervous system of the fruit fly.
    Venken KJ, Simpson JH, Bellen HJ
    Neuron. 2011 Oct 20;72(2):202-30. doi: 10.1016/j.neuron.2011.09.021

    Research in the fruit fly Drosophila melanogaster has led to insights in neural development, axon guidance, ion channel function, synaptic transmission, learning and memory, diurnal rhythmicity, and neural disease that have had broad implications for neuroscience. Drosophila is currently the eukaryotic model organism that permits the most sophisticated in vivo manipulations to address the function of neurons and neuronally expressed genes. Here, we summarize many of the techniques that help assess the role of specific neurons by labeling, removing, or altering their activity. We also survey genetic manipulations to identify and characterize neural genes by mutation, overexpression, and protein labeling. Here, we attempt to acquaint the reader with available options and contexts to apply these methods.

    View Publication Page
    10/14/11 | Cell biology. SevERing mitochondria.
    Rambold AS, Lippincott-Schwartz J
    Science (New York, N.Y.). 2011 Oct 14;334(6053):186-7. doi: 10.1126/science.1214059
    Gonen Lab
    10/12/11 | Advances in structural and functional analysis of membrane proteins by electron crystallography.
    Wisedchaisri G, Reichow SL, Gonen T
    Structure. 2011 Oct 12;19(10):1381-93. doi: 10.1016/j.str.2011.09.001

    Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography.

    View Publication Page