Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

236 Publications

Showing 111-120 of 236 results
Your Criteria:
    Looger Lab
    07/16/14 | Receptive field properties of bipolar cell axon terminals in the direction-selective sublaminas of the mouse retina.
    Chen M, Lee S, Park SJ, Looger LL, Zhou ZJ
    Journal of Neurophysiology. 2014 Jul 16;112(8):1950-62. doi: 10.1152/jn.00283.2014

    Retinal bipolar cells (BCs) transmit visual signals in parallel channels from the outer to the inner retina, where they provide glutamatergic inputs to specific networks of amacrine and ganglion cells. Intricate network computation at BC axon terminals has been proposed as a mechanism for complex network computation, such as direction selectivity, but direct knowledge of the receptive field property and the synaptic connectivity of the axon terminals of various BC types is required in order to understand the role of axonal computation by BCs. The present study tested the essential assumptions of the presynaptic model of direction selectivity at axon terminals of three functionally distinct BC types that ramify in the direction-selective strata of the mouse retina. Results from two-photon Ca2+ imaging, optogenetic stimulation, and dual patch-clamp recording demonstrated that (1) CB5 cells do not receive fast GABAergic synaptic feedback from starburst amacrine cells (SACs), (2) light-evoked and spontaneous Ca2+ responses are well coordinated among various local regions of CB5 axon terminals, (3) CB5 axon terminals are not directionally selective, (4) CB5 cells consist of two novel functional subtypes with distinct receptive field structures, (5) CB7 cells provide direct excitatory synaptic inputs to, but receive no direct GABAergic synaptic feedback from SACs, and (6) CB7 axon terminals are not directionally selective either. These findings help to simplify models of direction selectivity by ruling out complex computation at BC terminals. They also show that CB5 comprises two functional subclasses of BCs.

    View Publication Page
    07/14/14 | Sparse LMS via online linearized Bregman iteration.
    Hu T, Chklovskii DB
    ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2014 Jul 14:. doi: 10.1109/ICASSP.2014.6855000

    We propose a version of least-mean-square (LMS) algorithm for sparse system identification. Our algorithm called online linearized Bregman iteration (OLBI) is derived from minimizing the cumulative prediction error squared along with an l 1 -l 2 norm regularizer. By systematically treating the non-differentiable regularizer we arrive at a simple two-step iteration. We demonstrate that OLBI is bias free and compare its operation with existing sparse LMS algorithms by rederiving them in the online convex optimization framework. We perform convergence analysis of OLBI for white input signals and derive theoretical expressions for the steady state mean square deviations (MSD). We demonstrate numerically that OLBI improves the performance of LMS type algorithms for signals generated from sparse tap weights.

    View Publication Page
    Pavlopoulos Lab
    07/14/14 | Transgenesis in non-model organisms: the case of Parhyale.
    Kontarakis Z, Pavlopoulos A
    Methods Mol Biol. 2014;1196:145-81. doi: 10.1007/978-1-4939-1242-1_10

    One of the most striking manifestations of Hox gene activity is the morphological and functional diversity of arthropod body plans, segments, and associated appendages. Among arthropod models, the amphipod crustacean Parhyale hawaiensis satisfies a number of appealing biological and technical requirements to study the Hox control of tissue and organ morphogenesis. Parhyale embryos undergo direct development from fertilized eggs into miniature adults within 10 days and are amenable to all sorts of embryological and functional genetic manipulations. Furthermore, each embryo develops a series of specialized appendages along the anterior-posterior body axis, offering exceptional material to probe the genetic basis of appendage patterning, growth, and differentiation. Here, we describe the methodologies and techniques required for transgenesis-based gain-of-function studies of Hox genes in Parhyale embryos. First, we introduce a protocol for efficient microinjection of early-stage Parhyale embryos. Second, we describe the application of fast and reliable assays to test the activity of the Minos DNA transposon in embryos. Third, we present the use of Minos-based transgenesis vectors to generate stable and transient transgenic Parhyale. Finally, we describe the development and application of a conditional heat-inducible misexpression system to study the role of the Hox gene Ultrabithorax in Parhyale appendage specialization. Beyond providing a useful resource for Parhyalists, this chapter also aims to provide a road map for researchers working on other emerging model organisms. Acknowledging the time and effort that need to be invested in developing transgenic approaches in new species, it is all worth it considering the wide scope of experimentation that opens up once transgenesis is established.

    View Publication Page
    07/11/14 | FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila.
    Bath DE, Stowers JR, Hörmann D, Poehlmann A, Dickson BJ, Straw AD
    Nature Methods. 2014 Jul 11;11(7):756-62. doi: 10.1038/nmeth.2973

    Rapidly and selectively modulating the activity of defined neurons in unrestrained animals is a powerful approach in investigating the circuit mechanisms that shape behavior. In Drosophila melanogaster, temperature-sensitive silencers and activators are widely used to control the activities of genetically defined neuronal cell types. A limitation of these thermogenetic approaches, however, has been their poor temporal resolution. Here we introduce FlyMAD (the fly mind-altering device), which allows thermogenetic silencing or activation within seconds or even fractions of a second. Using computer vision, FlyMAD targets an infrared laser to freely walking flies. As a proof of principle, we demonstrated the rapid silencing and activation of neurons involved in locomotion, vision and courtship. The spatial resolution of the focused beam enabled preferential targeting of neurons in the brain or ventral nerve cord. Moreover, the high temporal resolution of FlyMAD allowed us to discover distinct timing relationships for two neuronal cell types previously linked to courtship song.

    View Publication Page
    Chklovskii Lab
    07/11/14 | Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis.
    Peng H, Tang J, Xiao H, Bria A, Zhou J, Butler V, Zhou Z, Gonzalez-Bellido PT, Oh SW, Chen J, Mitra A, Tsien RW, Zeng H, Ascoli GA, Iannello G, Hawrylycz M, Myers E, Long F
    Nature Communications. 2014 Jul 11;5:4342. doi: 10.1038/ncomms5342

    Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.

    View Publication Page
    07/10/14 | Transcription factors modulate c-Fos transcriptional bursts.
    Senecal A, Munsky B, Proux F, Ly N, Braye FE, Zimmer C, Mueller F, Darzacq X
    Cell Reports. 2014 Jul 10;8(1):75-83. doi: 10.1016/j.celrep.2014.05.053

    Transcription is a stochastic process occurring mostly in episodic bursts. Although the local chromatin environment is known to influence the bursting behavior on long timescales, the impact of transcription factors (TFs)-especially in rapidly inducible systems-is largely unknown. Using fluorescence in situ hybridization and computational models, we quantified the transcriptional activity of the proto-oncogene c-Fos with single mRNA accuracy at individual endogenous alleles. We showed that, during MAPK induction, the TF concentration modulates the burst frequency of c-Fos, whereas other bursting parameters remain mostly unchanged. By using synthetic TFs with TALE DNA-binding domains, we systematically altered different aspects of these bursts. Specifically, we linked the polymerase initiation frequency to the strength of the transactivation domain and the burst duration to the TF lifetime on the promoter. Our results show how TFs and promoter binding domains collectively act to regulate different bursting parameters, offering a vast, evolutionarily tunable regulatory range for individual genes.

    View Publication Page
    Sternson Lab
    07/08/14 | Chemogenetic tools to interrogate brain functions.
    Sternson SM, Roth BL
    Annual Review of Neuroscience. 2014 Jul 8;37:387-407. doi: 10.1146/annurev-neuro-071013-014048

    Elucidating the roles of neuronal cell types for physiology and behavior is essential for understanding brain functions. Perturbation of neuron electrical activity can be used to probe the causal relationship between neuronal cell types and behavior. New genetically encoded neuron perturbation tools have been developed for remotely controlling neuron function using small molecules that activate engineered receptors that can be targeted to cell types using genetic methods. Here we describe recent progress for approaches using genetically engineered receptors that selectively interact with small molecules. Called "chemogenetics," receptors with diverse cellular functions have been developed that facilitate the selective pharmacological control over a diverse range of cell-signaling processes, including electrical activity, for molecularly defined cell types. These tools have revealed remarkably specific behavioral physiological influences for molecularly defined cell types that are often intermingled with populations having different or even opposite functions.

    View Publication Page
    07/02/14 | Ascending SAG neurons control sexual receptivity of Drosophila females.
    Feng K, Palfreyman MT, Häsemeyer M, Talsma A, Dickson BJ
    Neuron. 2014 Jul 2;83(1):135-48. doi: 10.1016/j.neuron.2014.05.017

    Mating induces pronounced changes in female reproductive behavior, typically including a dramatic reduction in sexual receptivity. In Drosophila, postmating behavioral changes are triggered by sex peptide (SP), a male seminal fluid peptide that acts via a receptor (SPR) expressed in sensory neurons (SPSNs) of the female reproductive tract. Here, we identify second-order neurons that mediate the behavioral changes induced by SP. These SAG neurons receive synaptic input from SPSNs in the abdominal ganglion and project to the dorsal protocerebrum. Silencing SAG neurons renders virgin females unreceptive, whereas activating them increases the receptivity of females that have already mated. Physiological experiments demonstrate that SP downregulates the excitability of the SPSNs, and hence their input onto SAG neurons. These data thus provide a physiological correlate of mating status in the female central nervous system and a key entry point into the brain circuits that control sexual receptivity.

    View Publication Page
    Baker Lab
    07/02/14 | Central brain neurons expressing doublesex regulate female receptivity in Drosophila.
    Zhou C, Pan Y, Robinett CC, Meissner GW, Baker BS
    Neuron. 2014 Jul 2;83(1):149-63. doi: 10.1016/j.neuron.2014.05.038

    Drosophila melanogaster females respond to male courtship by either rejecting the male or allowing copulation. The neural mechanisms underlying these female behaviors likely involve the integration of sensory information in the brain. Because doublesex (dsx) controls other aspects of female differentiation, we asked whether dsx-expressing neurons mediate virgin female receptivity to courting males. Using intersectional techniques to manipulate the activities of defined subsets of dsx-expressing neurons, we found that activation of neurons in either the pCd or pC1 clusters promotes receptivity, while silencing these neurons makes females unreceptive. Furthermore, pCd and pC1 neurons physiologically respond to the male-specific pheromone cis-vaccenyl acetate (cVA), while pC1 neurons also respond to male courtship song. The pCd and pC1 neurons expressing dsx in females do not express transcripts from the fruitless (fru) P1 promoter. Thus, virgin female receptivity is controlled at least in part by neurons that are distinct from those governing male courtship.

    View Publication Page
    07/01/14 | MicroRNA binding to the HIV-1 Gag protein inhibits Gag assembly and virus production.
    Chen AK, Sengupta P, Waki K, Van Engelenburg SB, Ochiya T, Ablan SD, Freed EO, Lippincott-Schwartz J
    Proceedings of the National Academy of Sciences of the United States of America. 2014 Jul 1;111(26):E2676-83. doi: 10.1073/pnas.1408037111

    MicroRNAs (miRNAs) are small, 18-22 nt long, noncoding RNAs that act as potent negative gene regulators in a variety of physiological and pathological processes. To repress gene expression, miRNAs are packaged into RNA-induced silencing complexes (RISCs) that target mRNAs for degradation and/or translational repression in a sequence-specific manner. Recently, miRNAs have been shown to also interact with proteins outside RISCs, impacting cellular processes through mechanisms not involving gene silencing. Here, we define a previously unappreciated activity of miRNAs in inhibiting RNA-protein interactions that in the context of HIV-1 biology blocks HIV virus budding and reduces virus infectivity. This occurs by miRNA binding to the nucleocapsid domain of the Gag protein, the main structural component of HIV-1 virions. The resulting miRNA-Gag complexes interfere with viral-RNA-mediated Gag assembly and viral budding at the plasma membrane, with imperfectly assembled Gag complexes endocytosed and delivered to lysosomes. The blockade of virus production by miRNA is reversed by adding the miRNA's target mRNA and stimulated by depleting Argonaute-2, suggesting that when miRNAs are not mediating gene silencing, they can block HIV-1 production through disruption of Gag assembly on membranes. Overall, our findings have significant implications for understanding how cells modulate HIV-1 infection by miRNA expression and raise the possibility that miRNAs can function to disrupt RNA-mediated protein assembly processes in other cellular contexts.

    View Publication Page