Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

202 Publications

Showing 201-202 of 202 results
Your Criteria:
    01/06/19 | Physical Principles of Membrane Shape Regulation by the Glycocalyx
    Shurer CR, Kuo JC, Roberts LM, Gandhi JG, Colville MJ, Enoki TA, Pan H, Su J, Noble JM, Hollander MJ, O’Donnell JP, Yin R, Pedram K, Möckl L, Kourkoutis LF, Moerner W, Bertozzi CR, Feigenson GW, Reesink HL, Paszek MJ
    Cell. Jan-06-2019;177(7):1757 - 1770.e21. doi: 10.1016/j.cell.2019.04.017

    Cells bend their plasma membranes into highly curved forms to interact with the local environment, but how shape generation is regulated is not fully resolved. Here, we report a synergy between shape-generating processes in the cell interior and the external organization and composition of the cell-surface glycocalyxMucin biopolymers and long-chain polysaccharides within the glycocalyx can generate entropic forces that favor or disfavor the projection of spherical and finger-like extensions from the cell surface. A polymer brush model of the glycocalyx successfully predicts the effects of polymer size and cell-surface density on membrane morphologies. Specific glycocalyx compositions can also induce plasma membrane instabilities to generate more exotic undulating and pearled membrane structures and drive secretion of extracellular vesicles. Together, our results suggest a fundamental role for the glycocalyx in regulating curved membrane features that serve in communication between cells and with the extracellular matrix.

    View Publication Page
    01/01/19 | Neural Correlates of Cognition in Primary Visual versus Downstream Posterior Cortices During Evidence Accumulation
    Koay SA, Tank D, Brody C
    APS March Meeting Abstracts. 01/2019:

    The ability of animals to accumulate sensory information across time is fundamental to decision-making. Using a mouse behavioral paradigm where navigational decisions are based on accumulating pulses of visual cues, I compared neural activity in primary visual (V1) to secondary visual and retrosplenial cortices. Even in V1, only a small fraction of neurons had sensory-like responses to cues. Instead, all areas were grossly similar in how neural populations contained a large variety of task-related information from sensory to cognitive, including cue timings, accumulated counts, place/time, decision and reward outcome. Across-trial influences were prevalent, possibly relevant to how animal behavior incorporates past contexts. Intriguingly, all these variables also modulated the amplitudes of sensory responses. While previous work often modeled the accumulation process as integration, the observed scaling of sensory responses by accumulated counts instead suggests a recursive process where sensory responses are gradually amplified. I show that such a multiplicative feedback-loop algorithm better explains psychophysical data than integration, particularly in how the performance transitions into following Weber-Fechner's Law only at high counts.

     

     

    View Publication Page