Filter
Associated Lab
- 43418 (5) Apply 43418 filter
- 43427 (4) Apply 43427 filter
- 43430 (6) Apply 43430 filter
- Ahrens Lab (4) Apply Ahrens Lab filter
- Aso Lab (3) Apply Aso Lab filter
- Betzig Lab (4) Apply Betzig Lab filter
- Beyene Lab (1) Apply Beyene Lab filter
- Branson Lab (3) Apply Branson Lab filter
- Card Lab (5) Apply Card Lab filter
- Cardona Lab (3) Apply Cardona Lab filter
- Clapham Lab (1) Apply Clapham Lab filter
- Dickson Lab (4) Apply Dickson Lab filter
- Dudman Lab (2) Apply Dudman Lab filter
- Espinosa Medina Lab (2) Apply Espinosa Medina Lab filter
- Fitzgerald Lab (3) Apply Fitzgerald Lab filter
- Funke Lab (4) Apply Funke Lab filter
- Grigorieff Lab (3) Apply Grigorieff Lab filter
- Harris Lab (1) Apply Harris Lab filter
- Heberlein Lab (2) Apply Heberlein Lab filter
- Hermundstad Lab (2) Apply Hermundstad Lab filter
- Hess Lab (5) Apply Hess Lab filter
- Jayaraman Lab (4) Apply Jayaraman Lab filter
- Johnson Lab (1) Apply Johnson Lab filter
- Keller Lab (5) Apply Keller Lab filter
- Lavis Lab (9) Apply Lavis Lab filter
- Lee (Albert) Lab (5) Apply Lee (Albert) Lab filter
- Li Lab (3) Apply Li Lab filter
- Lippincott-Schwartz Lab (8) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (7) Apply Liu (Zhe) Lab filter
- Looger Lab (7) Apply Looger Lab filter
- Pachitariu Lab (2) Apply Pachitariu Lab filter
- Pedram Lab (3) Apply Pedram Lab filter
- Podgorski Lab (5) Apply Podgorski Lab filter
- Reiser Lab (2) Apply Reiser Lab filter
- Romani Lab (2) Apply Romani Lab filter
- Rubin Lab (9) Apply Rubin Lab filter
- Saalfeld Lab (2) Apply Saalfeld Lab filter
- Scheffer Lab (1) Apply Scheffer Lab filter
- Schreiter Lab (5) Apply Schreiter Lab filter
- Sgro Lab (4) Apply Sgro Lab filter
- Spruston Lab (5) Apply Spruston Lab filter
- Stern Lab (4) Apply Stern Lab filter
- Sternson Lab (4) Apply Sternson Lab filter
- Stringer Lab (2) Apply Stringer Lab filter
- Svoboda Lab (5) Apply Svoboda Lab filter
- Tebo Lab (4) Apply Tebo Lab filter
- Truman Lab (3) Apply Truman Lab filter
- Turaga Lab (1) Apply Turaga Lab filter
- Turner Lab (3) Apply Turner Lab filter
- Zlatic Lab (2) Apply Zlatic Lab filter
Associated Project Team
- Fly Descending Interneuron (2) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (1) Apply Fly Functional Connectome filter
- FlyEM (2) Apply FlyEM filter
- FlyLight (8) Apply FlyLight filter
- GENIE (5) Apply GENIE filter
- MouseLight (1) Apply MouseLight filter
- Tool Translation Team (T3) (3) Apply Tool Translation Team (T3) filter
- Transcription Imaging (1) Apply Transcription Imaging filter
Publication Date
- Remove 2020 filter 2020
Type of Publication
191 Publications
Showing 161-170 of 191 resultsNervous systems have the ability to select appropriate actions and action sequences in response to sensory cues. The circuit mechanisms by which nervous systems achieve choice, stability and transitions between behaviors are still incompletely understood. To identify neurons and brain areas involved in controlling these processes, we combined a large-scale neuronal inactivation screen with automated action detection in response to a mechanosensory cue in Drosophila larva. We analyzed behaviors from 2.9x105 larvae and identified 66 candidate lines for mechanosensory responses out of which 25 for competitive interactions between actions. We further characterize in detail the neurons in these lines and analyzed their connectivity using electron microscopy. We found the neurons in the mechanosensory network are located in different regions of the nervous system consistent with a distributed model of sensorimotor decision-making. These findings provide the basis for understanding how selection and transition between behaviors are controlled by the nervous system.
3-photon excitation enables in vivo fluorescence microscopy deep in densely labeled and highly scattering samples, while maintaining high resolution and contrast. We designed and characterized a dual-plane 3-photon microscope with temporal multiplexing and remote focusing, and performed simultaneous in vivo calcium imaging of two planes deep in the cortex of a transgenic mouse expressing GCaMP6s in nearly all excitatory neurons.
We review recent progress in neural probes for brain recording, with a focus on the Neuropixels platform. Historically the number of neurons’ recorded simultaneously, follows a Moore’s law like behavior, with numbers doubling every 6.7 years. Using traditional techniques of probe fabrication, continuing to scale up electrode densities is very challenging. We describe a custom CMOS process technology that enables electrode counts well beyond 1000 electrodes; with the aim to characterize large neural populations with single neuron spatial precision and millisecond timing resolution. This required integrating analog and digital circuitry with the electrode array, making it a standalone integrated electrophysiology recording system. Input referred noise and power per channel is 7.5µV and <50µW respectively to ensure tissue heating <1°C. This approach enables doubling the number of measured neurons every 12 months.
Here we design and optimize a genetically encoded fluorescent indicator, iAChSnFR, for the ubiquitous neurotransmitter acetylcholine, based on a bacterial periplasmic binding protein. iAChSnFR shows large fluorescence changes, rapid rise and decay kinetics, and insensitivity to most cholinergic drugs. iAChSnFR revealed large transients in a variety of slice and in vivo preparations in mouse, fish, fly and worm. iAChSnFR will be useful for the study of acetylcholine in all animals.
Pairwise sequence covariations are a signal of conserved RNA secondary structure. We describe a method for distinguishing when lack of covariation signal can be taken as evidence against a conserved RNA structure, as opposed to when a sequence alignment merely has insufficient variation to detect covariations. We find that alignments for several long noncoding RNAs previously shown to lack covariation support do have adequate covariation detection power, providing additional evidence against their proposed conserved structures.
Until recent advancements in genome editing via CRISPR/Cas9 technology, understanding protein function typically involved artificially overexpressing proteins of interest. Despite that CRISPR/Cas9 has ushered in a new era of possibilities for modifying endogenous genes with labeling tags (knock-in) to more accurately study proteins under physiological conditions, the technique is largely underutilized due to its tedious, multi-step process. Here we outline a homologous recombination system (FAST-HDR) to be used in combination with CRISPR/Cas9 that significantly simplifies and accelerates this process while introducing multiplexing to allow live-cell studies of 3 endogenous proteins within the same cell line. Furthermore, the recombination vectors are assembled in a single reaction that is enhanced for eliminating false positives and reduces the overall creation time for the knockin cell line from ~8 weeks to <15 days. Finally, the system utilizes a modular construction to allow for seamlessly swapping labeling tags to ensure flexibility according to the area under study. We validated this new methodology by developing advanced cell lines with 3 fluorescent-labeled endogenous proteins that support high-content phenotypic drug screening without using antibodies or exogenous staining. Therefore, Fast-HDR cell lines provide a robust alternative for studying multiple proteins of interest in live cells without artificially overexpressing labeled proteins.
Many biological applications require the segmentation of cell bodies, membranes and nuclei from microscopy images. Deep learning has enabled great progress on this problem, but current methods are specialized for images that have large training datasets. Here we introduce a generalist, deep learning-based segmentation algorithm called Cellpose, which can very precisely segment a wide range of image types out-of-the-box and does not require model retraining or parameter adjustments. We trained Cellpose on a new dataset of highly-varied images of cells, containing over 70,000 segmented objects. To support community contributions to the training data, we developed software for manual labelling and for curation of the automated results, with optional direct upload to our data repository. Periodically retraining the model on the community-contributed data will ensure that Cellpose improves constantly.
The resolution of subtomogram averages calculated from cryo-electron tomograms (cryo-ET) of crowded cellular environments is often limited owing to signal loss in, and misalignment of, the subtomograms. By contrast, single-particle cryo-electron microscopy (SP-cryo-EM) routinely reaches near-atomic resolution of isolated complexes. We report a method called 'tomography-guided 3D reconstruction of subcellular structures' (TYGRESS) that is a hybrid of cryo-ET and SP-cryo-EM, and is able to achieve close-to-nanometer resolution of complexes inside crowded cellular environments. TYGRESS combines the advantages of SP-cryo-EM (images with good signal-to-noise ratio and contrast, as well as minimal radiation damage) and subtomogram averaging (three-dimensional alignment of macromolecules in a complex sample). Using TYGRESS, we determined the structure of the intact ciliary axoneme with up to resolution of 12 Å. These results reveal many structural details that were not visible by cryo-ET alone. TYGRESS is generally applicable to cellular complexes that are amenable to subtomogram averaging.
While cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant embryonic divisions and found several reproducibly altered parameters at different stages. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, cytokinesis is implemented in a specialized way during epithelial polarization and Aurora B has a new role in the formation of the apical surface.
The biological membranes of many cell types contain large-pore channels through which a wide variety of ions and metabolites permeate. Examples include connexin, innexin and pannexin, which form gap junctions and/or bona fide cell surface channels. The most recently identified large-pore channels are the calcium homeostasis modulators (CALHMs), through which ions and ATP permeate in a voltage-dependent manner to control neuronal excitability, taste signaling and pathologies of depression and Alzheimer's disease. Despite such critical biological roles, the structures and patterns of their oligomeric assembly remain unclear. Here, we reveal the structures of two CALHMs, chicken CALHM1 and human CALHM2, by single-particle cryo-electron microscopy (cryo-EM), which show novel assembly of the four transmembrane helices into channels of octamers and undecamers, respectively. Furthermore, molecular dynamics simulations suggest that lipids can favorably assemble into a bilayer within the larger CALHM2 pore, but not within CALHM1, demonstrating the potential correlation between pore size, lipid accommodation and channel activity.