Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block

Publication Date

facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

196 Publications

Showing 161-170 of 196 results
Your Criteria:
    02/25/20 | High-throughput cellular-resolution synaptic connectivity mapping in vivo with concurrent two-photon optogenetics and volumetric Ca2+ imaging
    McRaven C, Tanese D, Zhang L, Yang C, Ahrens MB, Emiliani V, Koyama M
    bioRxiv. 2020 Feb 25:. doi: https://doi.org/10.1101/2020.02.21.959650

    The ability to measure synaptic connectivity and properties is essential for understanding neuronal circuits. However, existing methods that allow such measurements at cellular resolution are laborious and technically demanding. Here, we describe a system that allows such measurements in a high-throughput way by combining two-photon optogenetics and volumetric Ca2+ imaging with whole-cell recording. We reveal a circuit motif for generating fast undulatory locomotion in zebrafish.

    View Publication Page
    02/24/20 | Multiple network properties overcome random connectivity to enable stereotypic sensory responses.
    Mittal AM, Gupta D, Singh A, Lin AC, Gupta N
    Nature Communications. 2020 Feb 24;11(1):1023. doi: 10.1038/s41467-020-14836-6

    Connections between neuronal populations may be genetically hardwired or random. In the insect olfactory system, projection neurons of the antennal lobe connect randomly to Kenyon cells of the mushroom body. Consequently, while the odor responses of the projection neurons are stereotyped across individuals, the responses of the Kenyon cells are variable. Surprisingly, downstream of Kenyon cells, mushroom body output neurons show stereotypy in their responses. We found that the stereotypy is enabled by the convergence of inputs from many Kenyon cells onto an output neuron, and does not require learning. The stereotypy emerges in the total response of the Kenyon cell population using multiple odor-specific features of the projection neuron responses, benefits from the nonlinearity in the transfer function, depends on the convergence:randomness ratio, and is constrained by sparseness. Together, our results reveal the fundamental mechanisms and constraints with which convergence enables stereotypy in sensory responses despite random connectivity.

    View Publication Page
    02/18/20 | Transcriptional co-repressor Sin3a regulates hippocampal synaptic plasticity via Homer1/mGluR5.
    Bridi MS, Schoch H, Florian C, Poplawski SG, Banerjee A, Hawk JD, Banks GS, Lejards C, Hahn C, Giese KP, Havekes R, Spruston N, Abel T
    JCI Insight. 2020 Feb 18:. doi: 10.1172/jci.insight.92385

    Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of two classes of regulatory complexes: permissive co-activators and silencing co-repressors. Much work has focused on co-activator complexes, but little is known about the co-repressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the co-repressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the post-synaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the mGluR1α- and mGluR5-dependence of long-term potentiation, and increases activation of extracellular signal regulated kinase (ERK) in the hippocampus after learning. Our studies define a critical role for co-repressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.

    View Publication Page
    02/17/20 | Behavioral features of motivated response to alcohol in Drosophila.
    Catalano JL, Mei N, Azanchi R, Song S, Blackwater T, Heberlein U, Kaun KR
    bioRxiv. 2020 Feb 17:

    Animals avoid predators and find the best food and mates by learning from the consequences of their behavior. However, reinforcers are not always uniquely appetitive or aversive but can have complex properties. Most intoxicating substances fall within this category; provoking aversive sensory and physiological reactions while simultaneously inducing overwhelming appetitive properties. Here we describe the subtle behavioral features associated with continued seeking for alcohol despite aversive consequences. We developed an automated runway apparatus to measure how Drosophila respond to consecutive exposures of a volatilized substance. Behavior within this Behavioral Expression of Ethanol Reinforcement Runway (BEER Run) demonstrated a defined shift from aversive to appetitive responses to volatilized ethanol. Behavioral metrics attained by combining computer vision and machine learning methods, reveal that a subset of 9 classified behaviors and component behavioral features associate with this shift. We propose this combination of 9 be

    View Publication Page
    Cardona LabFly Facility
    02/14/20 | Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila.
    Masson J, Laurent F, Cardona A, Barre C, Skatchkovsky N, Zlatic M, Jovanic T
    PLoS Genetics. 2020 Feb 14;16(2):e1008589. doi: 10.1371/journal.pgen.1008589

    Nervous systems have the ability to select appropriate actions and action sequences in response to sensory cues. The circuit mechanisms by which nervous systems achieve choice, stability and transitions between behaviors are still incompletely understood. To identify neurons and brain areas involved in controlling these processes, we combined a large-scale neuronal inactivation screen with automated action detection in response to a mechanosensory cue in Drosophila larva. We analyzed behaviors from 2.9x105 larvae and identified 66 candidate lines for mechanosensory responses out of which 25 for competitive interactions between actions. We further characterize in detail the neurons in these lines and analyzed their connectivity using electron microscopy. We found the neurons in the mechanosensory network are located in different regions of the nervous system consistent with a distributed model of sensorimotor decision-making. These findings provide the basis for understanding how selection and transition between behaviors are controlled by the nervous system.

    View Publication Page
    02/14/20 | Multiplexed 3-photon microscopy for functional connectomics of mammalian brains.
    Takasaki K, Tsyboulski DA, Waters J
    Multiphoton Microscopy in the Biomedical Sciences XXMultiphoton Microscopy in the Biomedical Sciences XX. 2020 Feb 14:. doi: 10.1117/12.2543232

    3-photon excitation enables in vivo fluorescence microscopy deep in densely labeled and highly scattering samples, while maintaining high resolution and contrast. We designed and characterized a dual-plane 3-photon microscope with temporal multiplexing and remote focusing, and performed simultaneous in vivo calcium imaging of two planes deep in the cortex of a transgenic mouse expressing GCaMP6s in nearly all excitatory neurons.

    View Publication Page
    02/13/20 | The Neuropixels probe: A CMOS based integrated microsystems platform for neuroscience and brain-computer interfaces.
    Dutta B, Trautmann EM, Welkenhuysen M, Shenoy KV, Andrei A, Harris TD, Lopez CM, O'Callahan J, Putzeys J, Raducanu BC, Severi S, Stavisky SD
    2019 IEEE International Electron Devices Meeting (IEDM). 2020 Feb 13:. doi: 10.1109/IEDM19573.201910.1109/IEDM19573.2019.8993611

    We review recent progress in neural probes for brain recording, with a focus on the Neuropixels platform. Historically the number of neurons’ recorded simultaneously, follows a Moore’s law like behavior, with numbers doubling every 6.7 years. Using traditional techniques of probe fabrication, continuing to scale up electrode densities is very challenging. We describe a custom CMOS process technology that enables electrode counts well beyond 1000 electrodes; with the aim to characterize large neural populations with single neuron spatial precision and millisecond timing resolution. This required integrating analog and digital circuitry with the electrode array, making it a standalone integrated electrophysiology recording system. Input referred noise and power per channel is 7.5µV and <50µW respectively to ensure tissue heating <1°C. This approach enables doubling the number of measured neurons every 12 months.

    View Publication Page
    02/08/20 | A fast genetically encoded fluorescent sensor for faithful in vivo acetylcholine detection in mice, fish, worms and flies.
    Borden P, Zhang P, Shivange AV, Marvin JS, Cichon J, Dan C, Podgorski K, Figueiredo A, Novak O, Tanimoto M, Shigetomi E, Lobas MA, Kim H, Zhu P, Zhang Y, Zheng WS, Fan C, Wang G, Xiang B, Gan L, Zhang G, Guo K, Lin L, Cai Y, Yee AG, Aggarwal A, Ford CP, Rees DC, Dietrich D, Khakh BS, Dittman JS, Gan W, Koyama M, Jayaraman V, Cheer JF, Lester HA, Zhu JJ, Looger LL
    bioRxiv. 2020 Feb 8:. doi: https://doi.org/10.1101/2020.02.07.939504

    Here we design and optimize a genetically encoded fluorescent indicator, iAChSnFR, for the ubiquitous neurotransmitter acetylcholine, based on a bacterial periplasmic binding protein. iAChSnFR shows large fluorescence changes, rapid rise and decay kinetics, and insensitivity to most cholinergic drugs. iAChSnFR revealed large transients in a variety of slice and in vivo preparations in mouse, fish, fly and worm. iAChSnFR will be useful for the study of acetylcholine in all animals.

    View Publication Page
    05/01/20 | Estimating the power of sequence covariation for detecting conserved RNA structure.
    Rivas E, Clements J, Eddy SR, Ponty Y
    Bioinformatics. 2020 May 01;36(10):3072-76. doi: 10.1093/bioinformatics/btaa080

    Pairwise sequence covariations are a signal of conserved RNA secondary structure. We describe a method for distinguishing when lack of covariation signal can be taken as evidence against a conserved RNA structure, as opposed to when a sequence alignment merely has insufficient variation to detect covariations. We find that alignments for several long noncoding RNAs previously shown to lack covariation support do have adequate covariation detection power, providing additional evidence against their proposed conserved structures.

    View Publication Page
    02/06/20 | A versatile vector system for the fast generation of knock-in cell lines with CRISPR.
    Perez-Leal O, Nixon-Abell J, Barrero CA, Gordon J, Rico MC
    bioRxiv. 2020 Feb 06:. doi: 10.1101/2020.02.06.927384

    Until recent advancements in genome editing via CRISPR/Cas9 technology, understanding protein function typically involved artificially overexpressing proteins of interest. Despite that CRISPR/Cas9 has ushered in a new era of possibilities for modifying endogenous genes with labeling tags (knock-in) to more accurately study proteins under physiological conditions, the technique is largely underutilized due to its tedious, multi-step process. Here we outline a homologous recombination system (FAST-HDR) to be used in combination with CRISPR/Cas9 that significantly simplifies and accelerates this process while introducing multiplexing to allow live-cell studies of 3 endogenous proteins within the same cell line. Furthermore, the recombination vectors are assembled in a single reaction that is enhanced for eliminating false positives and reduces the overall creation time for the knockin cell line from ~8 weeks to <15 days. Finally, the system utilizes a modular construction to allow for seamlessly swapping labeling tags to ensure flexibility according to the area under study. We validated this new methodology by developing advanced cell lines with 3 fluorescent-labeled endogenous proteins that support high-content phenotypic drug screening without using antibodies or exogenous staining. Therefore, Fast-HDR cell lines provide a robust alternative for studying multiple proteins of interest in live cells without artificially overexpressing labeled proteins.

    View Publication Page