Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

31 Publications

Showing 21-30 of 31 results
Your Criteria:
    12/28/16 | Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs.
    Wu M, Nern A, Williamson WR, Morimoto MM, Reiser MB, Card GM, Rubin GM
    eLife. 2016 Dec 28;5:. doi: 10.7554/eLife.21022

    Visual projection neurons (VPNs) provide an anatomical connection between early visual processing and higher brain regions. Here we characterize lobula columnar (LC) cells, a class of Drosophila VPNs that project to distinct central brain structures called optic glomeruli. We anatomically describe 22 different LC types and show that, for several types, optogenetic activation in freely moving flies evokes specific behaviors. The activation phenotypes of two LC types closely resemble natural avoidance behaviors triggered by a visual loom. In vivo two-photon calcium imaging reveals that these LC types respond to looming stimuli, while another type does not, but instead responds to the motion of a small object. Activation of LC neurons on only one side of the brain can result in attractive or aversive turning behaviors depending on the cell type. Our results indicate that LC neurons convey information on the presence and location of visual features relevant for specific behaviors.

    View Publication Page
    10/03/16 | Comparative approaches to escape.
    Peek MY, Card GM
    Current Opinion in Neurobiology. 2016 Oct 3;41:167-173. doi: 10.1016/j.conb.2016.09.012

    Neural circuits mediating visually evoked escape behaviors are promising systems in which to dissect the neural basis of behavior. Behavioral responses to predator-like looming stimuli, and their underlying neural computations, are remarkably similar across species. Recently, genetic tools have been applied in this classical paradigm, revealing novel non-cortical pathways that connect loom processing to defensive behaviors in mammals and demonstrating that loom encoding models from locusts also fit vertebrate neural responses. In both invertebrates and vertebrates, relative spike-timing in descending pathways is a mechanism for escape behavior choice. Current findings suggest that experimentally tractable systems, such as Drosophila, may be applicable models for sensorimotor processing and persistent states in higher organisms.

    View Publication Page
    05/25/16 | Genetic and environmental control of neurodevelopmental robustness in Drosophila.
    Mellert DJ, Williamson WR, Shirangi TR, Card GM, Truman JW
    PLoS One. 2016 May 25;11(5):e0155957. doi: 10.1371/journal.pone.0155957

    Interindividual differences in neuronal wiring may contribute to behavioral individuality and affect susceptibility to neurological disorders. To investigate the causes and potential consequences of wiring variation in Drosophila melanogaster, we focused on a hemilineage of ventral nerve cord interneurons that exhibits morphological variability. We find that late-born subclasses of the 12A hemilineage are highly sensitive to genetic and environmental variation. Neurons in the second thoracic segment are particularly variable with regard to two developmental decisions, whereas its segmental homologs are more robust. This variability "hotspot" depends on Ultrabithorax expression in the 12A neurons, indicating variability is cell-intrinsic and under genetic control. 12A development is more variable and sensitive to temperature in long-established laboratory strains than in strains recently derived from the wild. Strains with a high frequency of one of the 12A variants also showed a high frequency of animals with delayed spontaneous flight initiation, whereas other wing-related behaviors did not show such a correlation and were thus not overtly affected by 12A variation. These results show that neurodevelopmental robustness is variable and under genetic control in Drosophila and suggest that the fly may serve as a model for identifying conserved gene pathways that stabilize wiring in stressful developmental environments. Moreover, some neuronal lineages are variation hotspots and thus may be more amenable to evolutionary change.

    View Publication Page
    07/17/14 | A spike-timing mechanism for action selection.
    von Reyn CR, Breads P, Peek MY, Zheng GZ, Williamson WR, Yee AL, Leonardo A, Card GM
    Nature Neuroscience. 2014 Jul 17;17(7):962-70. doi: 10.1038/nn.3741

    We discovered a bimodal behavior in the genetically tractable organism Drosophila melanogaster that allowed us to directly probe the neural mechanisms of an action selection process. When confronted by a predator-mimicking looming stimulus, a fly responds with either a long-duration escape behavior sequence that initiates stable flight or a distinct, short-duration sequence that sacrifices flight stability for speed. Intracellular recording of the descending giant fiber (GF) interneuron during head-fixed escape revealed that GF spike timing relative to parallel circuits for escape actions determined which of the two behavioral responses was elicited. The process was well described by a simple model in which the GF circuit has a higher activation threshold than the parallel circuits, but can override ongoing behavior to force a short takeoff. Our findings suggest a neural mechanism for action selection in which relative activation timing of parallel circuits creates the appropriate motor output.

    View Publication Page
    04/01/12 | Escape behaviors in insects.
    Card GM
    Current Opinion in Neurobiology. 2012 Apr;22:180-6. doi: 10.1016/j.conb.2011.12.009

    Escape behaviors are, by necessity, fast and robust, making them excellent systems with which to study the neural basis of behavior. This is especially true in insects, which have comparatively tractable nervous systems and members who are amenable to manipulation with genetic tools. Recent technical developments in high-speed video reveal that, despite their short duration, insect escape behaviors are more complex than previously appreciated. For example, before initiating an escape jump, a fly performs sophisticated posture and stimulus-dependent preparatory leg movements that enable it to jump away from a looming threat. This newfound flexibility raises the question of how the nervous system generates a behavior that is both rapid and flexible. Recordings from the cricket nervous system suggest that synchrony between the activity of specific interneuron pairs may provide a rapid cue for the cricket to detect the direction of an approaching predator and thus which direction it should run. Technical advances make possible wireless recording from neurons while locusts escape from a looming threat, enabling, for the first time, a direct correlation between the activity of multiple neurons and the time-course of an insect escape behavior.

    View Publication Page
    09/01/09 | Flight dynamics and control of evasive maneuvers: the fruit fly’s takeoff.
    Zabala FA, Card GM, Fontaine EI, Dickinson MH, Murray RM
    IEEE Transactions on Bio-Medical Engineering. 2009 Sep;56(9):2295-8. doi: 10.1109/TBME.2009.2027606

    We have approached the problem of reverse-engineering the flight control mechanism of the fruit fly by studying the dynamics of the responses to a visual stimulus during takeoff. Building upon a prior framework [G. Card and M. Dickinson, J. Exp. Biol., vol. 211, pp. 341-353, 2008], we seek to understand the strategies employed by the animal to stabilize attitude and orientation during these evasive, highly dynamical maneuvers. As a first step, we consider the dynamics from a gray-box perspective: examining lumped forces produced by the insect’s legs and wings. The reconstruction of the flight initiation dynamics, based on the unconstrained motion formulation for a rigid body, allows us to assess the fly’s responses to a variety of initial conditions induced by its jump. Such assessment permits refinement by using a visual tracking algorithm to extract the kinematic envelope of the wings [E. I. Fontaine, F. Zabala, M. Dickinson, and J. Burdick, "Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking," submitted for publication] in order to estimate lift and drag forces [F. Zabala, M. Dickinson, and R. Murray, "Control and stability of insect flight during highly dynamical maneuvers," submitted for publication], and recording actual leg-joint kinematics and using them to estimate jump forces [F. Zabala, "A bio-inspired model for directionality control of flight initiation," to be published.]. In this paper, we present the details of our approach in a comprehensive manner, including the salient results.

    View Publication Page
    01/27/09 | Dynamics of escaping flight initiations of Drosophila melanogaster.
    Zabalax FA, Card GM, Fontaine EI, Murray RM, Dickinson MH
    2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. 2008:. doi: 10.1109/BIOROB.2008.4762921

    We present a reconstruction of the dynamics of flight initiation from kinematic data extracted from high-speed video recordings of the fruit fly Drosophila melanogaster. The dichotomy observed in this insect’s flight initiation sequences, generated by the presence or absence of visual stimuli, clearly generates two contrasting sets of dynamics once the flies become airborne. By calculating reaction forces and moments using the unconstrained motion formulation for a rigid body, we assess the fly’s responses amidst these two dynamic patterns as a step towards refining our understanding of insect flight control.

    View Publication Page
    09/09/08 | Visually mediated motor planning in the escape response of Drosophila.
    Card G, Dickinson MH
    Current Biology. 2008 Sep 9;18(17):1300-7. doi: 10.1016/j.cub.2008.07.094

    A key feature of reactive behaviors is the ability to spatially localize a salient stimulus and act accordingly. Such sensory-motor transformations must be particularly fast and well tuned in escape behaviors, in which both the speed and accuracy of the evasive response determine whether an animal successfully avoids predation [1]. We studied the escape behavior of the fruit fly, Drosophila, and found that flies can use visual information to plan a jump directly away from a looming threat. This is surprising, given the architecture of the pathway thought to mediate escape [2, 3]. Using high-speed videography, we found that approximately 200 ms before takeoff, flies begin a series of postural adjustments that determine the direction of their escape. These movements position their center of mass so that leg extension will push them away from the expanding visual stimulus. These preflight movements are not the result of a simple feed-forward motor program because their magnitude and direction depend on the flies’ initial postural state. Furthermore, flies plan a takeoff direction even in instances when they choose not to jump. This sophisticated motor program is evidence for a form of rapid, visually mediated motor planning in a genetically accessible model organism.

    View Publication Page
    02/01/08 | Performance trade-offs in the flight initiation of Drosophila.
    Card G, Dickinson M
    The Journal of Experimental Biology. 2008 Feb;211(Pt 3):341-53. doi: 10.1242/jeb.012682

    The fruit fly Drosophila melanogaster performs at least two distinct types of flight initiation. One kind is a stereotyped escape response to a visual stimulus that is mediated by the hard-wired giant fiber neural pathway, and the other is a more variable ;voluntary’ response that can be performed without giant fiber activation. Because the simpler escape take-offs are apparently successful, it is unclear why the fly has multiple pathways to coordinate flight initiation. In this study we use high-speed videography to observe flight initiation in unrestrained wild-type flies and assess the flight performance of each of the two types of take-off. Three-dimensional kinematic analysis of take-off sequences indicates that wing use during the jumping phase of flight initiation is essential for stabilizing flight. During voluntary take-offs, early wing elevation leads to a slower and more stable take-off. In contrast, during visually elicited escapes, the wings are pulled down close to the body during take-off, resulting in tumbling flights in which the fly translates faster but also rotates rapidly about all three of its body axes. Additionally, we find evidence that the power delivered by the legs is substantially greater during visually elicited escapes than during voluntary take-offs. Thus, we find that the two types of Drosophila flight initiation result in different flight performances once the fly is airborne, and that these performances are distinguished by a trade-off between speed and stability.

    View Publication Page
    03/01/06 | High-speed pollen release in the white mulberry tree, Morus alba L.
    Taylor PE, Card GM, House J, Dickinson MH, Flagan RC
    Sexual Plant Reproduction. 2006 Mar;19(1):19-24. doi: 10.1007/s00497-005-0018-9

    Anemophilous plants described as catapulting pollen explosively into the air have rarely attracted detailed examination. We investigated floral anthesis in a male mulberry tree with high-speed video and a force probe. The stamen was inflexed within the floral bud. Exposure to dry air initially resulted in a gradual movement of the stamen. This caused fine threads to tear at the stomium, ensuring dehiscence of the anther, and subsequently enabled the anther to slip off a restraining pistillode. The sudden release of stored elastic energy in the spring-like filament drove the stamen to straighten in less than 25 μs, and reflex the petals to velocities in excess of half the speed of sound. This is the fastest motion yet observed in biology, and approaches the theoretical physical limits for movements in plants.

    View Publication Page