Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

68 Publications

Showing 1-10 of 68 results
Your Criteria:
    01/24/24 | Motion of VAPB molecules reveals ER-mitochondria contact site subdomains.
    Obara CJ, Nixon-Abell J, Moore AS, Riccio F, Hoffman DP, Shtengel G, Xu CS, Schaefer K, Pasolli HA, Masson J, Hess HF, Calderon CP, Blackstone C, Lippincott-Schwartz J
    Nature. 2024 Jan 24;626(7997):169-176. doi: 10.1038/s41586-023-06956-y

    To coordinate cellular physiology, eukaryotic cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites. Endoplasmic reticulum-mitochondrial contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signalling molecules, lipids and metabolites. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation, a clear understanding of their nanoscale organization and regulation is still lacking. Here we combine three-dimensional electron microscopy with high-speed molecular tracking of a model organelle tether, Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), to map the structure and diffusion landscape of ERMCSs. We uncovered dynamic subdomains within VAPB contact sites that correlate with ER membrane curvature and undergo rapid remodelling. We show that VAPB molecules enter and leave ERMCSs within seconds, despite the contact site itself remaining stable over much longer time scales. This metastability allows ERMCSs to remodel with changes in the physiological environment to accommodate metabolic needs of the cell. An amyotrophic lateral sclerosis-associated mutation in VAPB perturbs these subdomains, likely impairing their remodelling capacity and resulting in impaired interorganelle communication. These results establish high-speed single-molecule imaging as a new tool for mapping the structure of contact site interfaces and reveal that the diffusion landscape of VAPB at contact sites is a crucial component of ERMCS homeostasis.

    View Publication Page
    12/01/23 | Structure, interaction, and nervous connectivity of beta cell primary cilia
    Andreas Müller , Nikolai Klena , Song Pang , Leticia Elizabeth Galicia Garcia , Davud Sulaymankhil , Oleksandra Topcheva , Monika Seliskar , Hassan Mziaut , Eyke Schöniger , Daniela Friedland , Nicole Kipke , Susanne Kretschmar , Carla Münster , Jürgen Weitz , Marius Distler , Thomas Kurth , Deborah Schmidt , Harald F. Hess , C. Shan Xu , Gaia Pigino , Michele Solimena
    bioRxiv. 2023 Dec 01:. doi: 10.1101/2023.12.01.568979

    Primary cilia are sensory organelles present in many cell types. Based on an array of microtubules termed axoneme they form a specialized membrane compartment partaking in various signaling processes. Primary cilia of pancreatic islet beta cells play a role in autocrine and paracrine signaling and are linked to diabetes. Yet, the structural basis for their functions is unclear. We present three-dimensional reconstructions of complete mouse and human beta cell cilia, revealing a disorganized 9+0 axoneme structure. Within the islet cilia are spatially confined within deep ciliary pockets or squeezed into narrow extracellular spaces between adjacent cells. Beta and alpha cell cilia physically interact with neighboring islet cells pushing and strongly bending their plasma membranes. Furthermore, beta cells can contain multiple cilia that can meet with other islet cell cilia in the extracellular space. Additionally, beta cell cilia establish connections with islet-projecting nerves. These findings highlight the pivotal role of beta cell primary cilia in islet cell connectivity, pointing at their potential functional role in integrating islet intrinsic and extrinsic signals. These novel insights contribute to understanding their significance in health and diabetes.

    View Publication Page
    11/06/23 | A complete reconstruction of the early visual system of an adult insect.
    Chua NJ, Makarova AA, Gunn P, Villani S, Cohen B, Thasin M, Wu J, Shefter D, Pang S, Xu CS, Hess HF, Polilov AA, Chklovskii DB
    Current Biology. 2023 Nov 06;33(21):4611-4623. doi: 10.1016/j.cub.2023.09.021

    For most model organisms in neuroscience, research into visual processing in the brain is difficult because of a lack of high-resolution maps that capture complex neuronal circuitry. The microinsect Megaphragma viggianii, because of its small size and non-trivial behavior, provides a unique opportunity for tractable whole-organism connectomics. We image its whole head using serial electron microscopy. We reconstruct its compound eye and analyze the optical properties of the ommatidia as well as the connectome of the first visual neuropil-the lamina. Compared with the fruit fly and the honeybee, Megaphragma visual system is highly simplified: it has 29 ommatidia per eye and 6 lamina neuron types. We report features that are both stereotypical among most ommatidia and specialized to some. By identifying the "barebones" circuits critical for flying insects, our results will facilitate constructing computational models of visual processing in insects.

    View Publication Page
    09/01/23 | Multiscale head anatomy of Megaphragma (Hymenoptera: Trichogrammatidae).
    Desyatirkina IA, Makarova AA, Pang S, Xu CS, Hess H, Polilov AA
    Arthropod Structure and Development. 2023 Sep 01;76:101299. doi: 10.1016/j.asd.2023.101299

    Methods of three-dimensional electron microscopy have been actively developed recently and open up great opportunities for morphological work. This approach is especially useful for studying microinsects, since it is possible to obtain complete series of high-resolution sections of a whole insect. Studies on the genus Megaphragma are especially important, since the unique phenomenon of lysis of most of the neuron nuclei was discovered in species of this genus. In this study we reveal the anatomical structure of the head of Megaphragma viggianii at all levels from organs to subcellular structures. Despite the miniature size of the body, most of the organ systems of M. viggianii retain the structural plan and complexity of organization at all levels. The set of muscles and the well-developed stomatogastric nervous system of this species correspond to those of larger insects, and there is also a well-developed tracheal system in the head of this species. Reconstructions of the head of M. viggianii at the cellular and subcellular levels were obtained, and of volumetric data were analyzed. A total of 689 nucleated cells of the head were reconstructed. The ultrastructure of M. viggianii is surprisingly complex, and the evolutionary benefits of such complexity are probably among the factors limiting the further miniaturization of parasitoid wasps.

    View Publication Page
    07/22/23 | Towards Generalizable Organelle Segmentation in Volume Electron Microscopy.
    Heinrich L, Patton W, Bennett D, Ackerman D, Park G, Bogovic JA, Eckstein N, Petruncio A, Clements J, Pang S, Shan Xu C, Funke J, Korff W, Hess H, Lippincott-Schwartz J, Saalfeld S, Weigel A, CellMap Project Team
    Microscopy and Microanalysis. 2023 Jul 22;29(Supplement_1):975. doi: 10.1093/micmic/ozad067.487
    06/06/23 | A Connectome of the Male Drosophila Ventral Nerve Cord
    Shin-ya Takemura , Kenneth J Hayworth , Gary B Huang , Michal Januszewski , Zhiyuan Lu , Elizabeth C Marin , Stephan Preibisch , C Shan Xu , John Bogovic , Andrew S Champion , Han S J Cheong , Marta Costa , Katharina Eichler , William Katz , Christopher Knecht , Feng Li , Billy J Morris , Christopher Ordish , Patricia K Rivlin , Philipp Schlegel , Kazunori Shinomiya , Tomke Sturner , Ting Zhao , Griffin Badalamente , Dennis Bailey , Paul Brooks , Brandon S Canino , Jody Clements , Michael Cook , Octave Duclos , Christopher R Dunne , Kelli Fairbanks , Siqi Fang , Samantha Finley-May , Audrey Francis , Reed George , Marina Gkantia , Kyle Harrington , Gary Patrick Hopkins , Joseph Hsu , Philip M Hubbard , Alexandre Javier , Dagmar Kainmueller , Wyatt Korff , Julie Kovalyak , Dominik Krzeminski , Shirley A Lauchie , Alanna Lohff , Charli Maldonado , Emily A Manley , Caroline Mooney , Erika Neace , Matthew Nichols , Omotara Ogundeyi , Nneoma Okeoma , Tyler Paterson , Elliott Phillips , Emily M Phillips , Caitlin Ribeiro , Sean M Ryan , Jon Thomson Rymer , Anne K Scott , Ashley L Scott , David Shepherd , Aya Shinomiya , Claire Smith , Alia Suleiman , Satoko Takemura , Iris Talebi , Imaan F M Tamimi , Eric T Trautman , Lowell Umayam , John J Walsh , Tansy Yang , Gerald M Rubin , Louis K Scheffer , Jan Funke , Stephan Saalfeld , Harald F Hess , Stephen M Plaza , Gwyneth M Card , Gregory S X E Jefferis , Stuart Berg
    bioRxiv. 2023 Jun 06:. doi: 10.1101/2023.06.05.543757

    Animal behavior is principally expressed through neural control of muscles. Therefore understanding how the brain controls behavior requires mapping neuronal circuits all the way to motor neurons. We have previously established technology to collect large-volume electron microscopy data sets of neural tissue and fully reconstruct the morphology of the neurons and their chemical synaptic connections throughout the volume. Using these tools we generated a dense wiring diagram, or connectome, for a large portion of the Drosophila central brain. However, in most animals, including the fly, the majority of motor neurons are located outside the brain in a neural center closer to the body, i.e. the mammalian spinal cord or insect ventral nerve cord (VNC). In this paper, we extend our effort to map full neural circuits for behavior by generating a connectome of the VNC of a male fly.

    View Publication Page
    05/31/23 | Comparative connectomics and escape behavior in larvae of closely related Drosophila species.
    Zhu J, Boivin J, Pang S, Xu CS, Lu Z, Saalfeld S, Hess HF, Ohyama T
    Current Biology. 2023 May 31:. doi: 10.1016/j.cub.2023.05.043

    Evolution has generated an enormous variety of morphological, physiological, and behavioral traits in animals. How do behaviors evolve in different directions in species equipped with similar neurons and molecular components? Here we adopted a comparative approach to investigate the similarities and differences of escape behaviors in response to noxious stimuli and their underlying neural circuits between closely related drosophilid species. Drosophilids show a wide range of escape behaviors in response to noxious cues, including escape crawling, stopping, head casting, and rolling. Here we find that D. santomea, compared with its close relative D. melanogaster, shows a higher probability of rolling in response to noxious stimulation. To assess whether this behavioral difference could be attributed to differences in neural circuitry, we generated focused ion beam-scanning electron microscope volumes of the ventral nerve cord of D. santomea to reconstruct the downstream partners of mdIV, a nociceptive sensory neuron in D. melanogaster. Along with partner interneurons of mdVI (including Basin-2, a multisensory integration neuron necessary for rolling) previously identified in D. melanogaster, we identified two additional partners of mdVI in D. santomea. Finally, we showed that joint activation of one of the partners (Basin-1) and a common partner (Basin-2) in D. melanogaster increased rolling probability, suggesting that the high rolling probability in D. santomea is mediated by the additional activation of Basin-1 by mdIV. These results provide a plausible mechanistic explanation for how closely related species exhibit quantitative differences in the likelihood of expressing the same behavior.

    View Publication Page
    11/23/22 | The 3D ultrastructure of the chordotonal organs in the antenna of a microwasp remains complex although simplified.
    Diakova AV, Makarova AA, Pang S, Xu CS, Hess H, Polilov AA
    Scientific Reports. 2022 Nov 23;12(1):20172. doi: 10.1038/s41598-022-24390-4

    Insect antennae are astonishingly versatile and have multiple sensory modalities. Audition, detection of airflow, and graviception are combined in the antennal chordotonal organs. The miniaturization of these complex multisensory organs has never been investigated. Here we present a comprehensive study of the structure and scaling of the antennal chordotonal organs of the extremely miniaturized parasitoid wasp Megaphragma viggianii based on 3D electron microscopy. Johnston's organ of M. viggianii consists of 19 amphinematic scolopidia (95 cells); the central organ consists of five scolopidia (20 cells). Plesiomorphic composition includes one accessory cell per scolopidium, but in M. viggianii this ratio is only 0.3. Scolopale rods in Johnston's organ have a unique structure. Allometric analyses demonstrate the effects of scaling on the antennal chordotonal organs in insects. Our results not only shed light on the universal principles of miniaturization of sense organs, but also provide context for future interpretation of the M. viggianii connectome.

    View Publication Page
    09/03/22 | Motion of single molecular tethers reveals dynamic subdomains at ER-mitochondria contact sites
    Christopher J. Obara , Jonathon Nixon-Abell , Andrew S. Moore , Federica Riccio , David P. Hoffman , Gleb Shtengel , C. Shan Xu , Kathy Schaefer , H. Amalia Pasolli , Jean-Baptiste Masson , Harald F. Hess , Christopher P. Calderon , Craig Blackstone , Jennifer Lippincott-Schwartz
    bioRxiv. 2022 Sep 03:. doi: 10.1101/2022.09.03.505525

    To coordinate cellular physiology, eukaryotic cells rely on the inter-organelle transfer of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondria contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites3. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle4,5. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation6,7, a clear understanding of their nanoscale structure and regulation is still lacking. Here, we combine 3D electron microscopy with high-speed molecular tracking of a model organelle tether, VAPB, to map the structure and diffusion landscape of ERMCSs. From EM reconstructions, we identified subdomains within the contact site where ER membranes dramatically deform to match local mitochondrial curvature. In parallel live cell experiments, we observed that the VAPB tethers that mediate this interface were not immobile, but rather highly dynamic, entering and leaving the site in seconds. These subdomains enlarged during nutrient stress, indicating ERMCSs can readily remodel under different physiological conditions. An ALS-associated mutation in VAPB altered the normal fluidity of contact sites, likely perturbing effective communication across the contact site and preventing remodeling. These results establish high speed single molecule imaging as a new tool for mapping the structure of contact site interfaces and suggest that the diffusion landscape of VAPB is a crucial component of ERMCS homeostasis.

    View Publication Page
    09/01/22 | A serotonergic axon-cilium synapse drives nuclear signaling to maintain chromatin accessibility
    Shu-Hsien Sheu , Srigokul Upadhyayula , Vincent Dupuy , Song Pang , Andrew L. Lemire , Deepika Walpita , H. Amalia Pasolli , Fei Deng , Jinxia Wan , Lihua Wang , Justin Houser , Silvia Sanchez-Martinez , Sebastian E. Brauchi , Sambashiva Banala , Melanie Freeman , C. Shan Xu , Tom Kirchhausen , Harald F. Hess , Luke Lavis , Yu-Long Li , Séverine Chaumont-Dubel , David E. Clapham
    Cell. 2022 Sep 01;185(18):3390-3407. doi: 10.1016/j.cell.2022.07.026

    Chemical synapses between axons and dendrites mediate much of the brain’s intercellular communication. Here we describe a new kind of synapse – the axo-ciliary synapse - between axons and primary cilia. By employing enhanced focused ion beam – scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between the serotonergic axons arising from the brainstem, and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, 5-hydroxytryptamine receptor 6 (HTR6), whose mutation is associated with learning and memory defects. Using a newly developed cilia-targeted serotonin sensor, we show that optogenetic stimulation of serotonergic axons results in serotonin release onto cilia. Ciliary HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway. Ablation of this pathway results in nuclear actin and chromatin accessibility changes in CA1 pyramidal neurons. Axo-ciliary synapses serve as a distinct mechanism for neuromodulators to program neuron transcription through privileged access to the nuclear compartment.

    View Publication Page