Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

130 Publications

Showing 61-70 of 130 results
Your Criteria:
    Svoboda LabFreeman Lab
    12/23/15 | Neural coding in barrel cortex during whisker-guided locomotion.
    Sofroniew NJ, Vlasov YA, Andrew Hires S, Freeman J, Svoboda K
    eLife. 2015 Dec 23;4:. doi: 10.7554/eLife.12559

    Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits.

    View Publication Page
    12/03/15 | Cortex commands the performance of skilled movement.
    Guo J, Graves AR, Guo WW, Zheng J, Lee A, Rodríguez-González J, Li N, Macklin JJ, Phillips JW, Mensh BD, Branson K, Hantman AW
    eLife. 2015 Dec 3;4:. doi: 10.7554/eLife.10774

    Mammalian cerebral cortex is accepted as being critical for voluntary motor control, but what functions depend on cortex is still unclear. Here we used rapid, reversible optogenetic inhibition to test the role of cortex during a head-fixed task in which mice reach, grab, and eat a food pellet. Sudden cortical inhibition blocked initiation or froze execution of this skilled prehension behavior, but left untrained forelimb movements unaffected. Unexpectedly, kinematically normal prehension occurred immediately after cortical inhibition even during rest periods lacking cue and pellet. This 'rebound' prehension was only evoked in trained and food-deprived animals, suggesting that a motivation-gated motor engram sufficient to evoke prehension is activated at inhibition's end. These results demonstrate the necessity and sufficiency of cortical activity for enacting a learned skill.

    View Publication Page
    Svoboda Lab
    11/18/15 | Neurodata without borders: creating a common data format for neurophysiology
    Teeters JL, Godfrey K, Young R, Dang C, Friedsam C, Wark B, Asari H, Peron S, Li N, Peyrache A
    Neuron. 2015 Nov 18;88(4):629-34. doi: 10.1016/j.neuron.2015.10.025

    The Neurodata Without Borders (NWB) initiative promotes data standardization in neuroscience to increase research reproducibility and opportunities. In the first NWB pilot project, neurophysiologists and software developers produced a common data format for recordings and metadata of cellular electrophysiology and optical imaging experiments. The format specification, application programming interfaces, and sample datasets have been released.

    View Publication Page
    Svoboda Lab
    08/06/15 | Low-noise encoding of active touch by layer 4 in the somatosensory cortex.
    Andrew Hires S, Gutnisky DA, Yu J, O'Connor DH, Svoboda K
    eLife. 2015 Aug 6;4:. doi: 10.7554/eLife.06619

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise.

    View Publication Page
    04/21/15 | A cellular resolution map of barrel cortex activity during tactile behavior.
    Peron SP, Freeman J, Iyer V, Guo C, Svoboda K
    Neuron. 2015 Apr 21;86(3):783-99. doi: 10.1016/j.neuron.2015.03.027

    Comprehensive measurement of neural activity remains challenging due to the large numbers of neurons in each brain area. We used volumetric two-photon imaging in mice expressing GCaMP6s and nuclear red fluorescent proteins to sample activity in 75% of superficial barrel cortex neurons across the relevant cortical columns, approximately 12,000 neurons per animal, during performance of a single whisker object localization task. Task-related activity peaked during object palpation. An encoding model related activity to behavioral variables. In the column corresponding to the spared whisker, 300 layer (L) 2/3 pyramidal neurons (17%) each encoded touch and whisker movements. Touch representation declined by half in surrounding columns; whisker movement representation was unchanged. Following the emergence of stereotyped task-related movement, sensory representations showed no measurable plasticity. Touch direction was topographically organized, with distinct organization for passive and active touch. Our work reveals sparse and spatially intermingled representations of multiple tactile features.

    View Publication Page
    Svoboda Lab
    04/10/15 | Comprehensive imaging of cortical networks.
    Peron S, Chen T, Svoboda K
    Current Opinion in Neurobiology. 2015 Apr 10;32:115-123. doi: 10.1016/j.conb.2015.03.016

    Neural computations are implemented by activity in spatially distributed neural circuits. Cellular imaging fills a unique niche in linking activity of specific types of neurons to behavior, over spatial scales spanning single neurons to entire brain regions, and temporal scales from milliseconds to months. Imaging may soon make it possible to track activity of all neurons in a brain region, such as a cortical column. We review recent methodological advances that facilitate optical imaging of neuronal populations in vivo, with an emphasis on calcium imaging using protein indicators in mice. We point out areas that are particularly ripe for future developments.

    View Publication Page
    03/11/15 | Dual-channel circuit mapping reveals sensorimotor convergence in the primary motor cortex.
    Hooks BM, Lin JY, Guo C, Svoboda K
    The Journal of Neuroscience. 2015 Mar 11;35(10):4418-26. doi: 10.1523/JNEUROSCI.3741-14.2015

    Cortical cells integrate synaptic input from multiple sources, but how these different inputs are distributed across individual neurons is largely unknown. Differences in input might account for diverse responses in neighboring neurons during behavior. We present a strategy for comparing the strengths of multiple types of input onto the same neuron. We developed methods for independent dual-channel photostimulation of synaptic inputs using ChR2 together with ReaChR, a red-shifted channelrhodopsin. We used dual-channel photostimulation to probe convergence of sensory information in the mouse primary motor cortex. Input from somatosensory cortex and thalamus converges in individual neurons. Similarly, inputs from distinct somatotopic regions of the somatosensory cortex are integrated at the level of single motor cortex neurons. We next developed a ReaChR transgenic mouse under the control of both Flp- and Cre-recombinases that is an effective tool for circuit mapping. Our approach to dual-channel photostimulation enables quantitative comparison of the strengths of multiple pathways across all length scales of the brain.

    View Publication Page
    Svoboda Lab
    02/25/15 | A motor cortex circuit for motor planning and movement
    Nuo Li , Tsai-Wen Chen , Zengcai V. Guo , Charles R. Gerfen , Karel Svoboda
    Nature. 2015 Feb 25;519(7541):51-6. doi: 10.1038/nature14178

    Activity in motor cortex predicts specific movements seconds before they occur, but how this preparatory activity relates to upcoming movements is obscure. We dissected the conversion of preparatory activity to movement within a structured motor cortex circuit. An anterior lateral region of the mouse cortex (a possible homologue of premotor cortex in primates) contains equal proportions of intermingled neurons predicting ipsi- or contralateral movements, yet unilateral inactivation of this cortical region during movement planning disrupts contralateral movements. Using cell-type-specific electrophysiology, cellular imaging and optogenetic perturbation, we show that layer 5 neurons projecting within the cortex have unbiased laterality. Activity with a contralateral population bias arises specifically in layer 5 neurons projecting to the brainstem, and only late during movement planning. These results reveal the transformation of distributed preparatory activity into movement commands within hierarchically organized cortical circuits.

    View Publication Page
    Svoboda Lab
    02/16/15 | Whisking.
    Sofroniew NJ, Svoboda K
    Current Biology. 2015 Feb 16;25(4):R137-40. doi: 10.1016/j.cub.2015.01.008

    Eyes may be 'the window to the soul' in humans, but whiskers provide a better path to the inner lives of rodents. The brain has remarkable abilities to focus its limited resources on information that matters, while ignoring a cacophony of distractions. While inspecting a visual scene, primates foveate to multiple salient locations, for example mouths and eyes in images of people, and ignore the rest. Similar processes have now been observed and studied in rodents in the context of whisker-based tactile sensation. Rodents use their mechanosensitive whiskers for a diverse range of tactile behaviors such as navigation, object recognition and social interactions. These animals move their whiskers in a purposive manner to locations of interest. The shapes of whiskers, as well as their movements, are exquisitely adapted for tactile exploration in the dark tight burrows where many rodents live. By studying whisker movements during tactile behaviors, we can learn about the tactile information available to rodents through their whiskers and how rodents direct their attention. In this primer, we focus on how the whisker movements of rats and mice are providing clues about the logic of active sensation and the underlying neural mechanisms.

    View Publication Page
    Svoboda Lab
    10/23/14 | Thorough GABAergic innervation of the entire axon initial segment revealed by an optogenetic 'laserspritzer'.
    Wang X, Hooks BM, Sun Q
    Journal of Physiology - London. 2014 Oct 1;592(Pt 19):4257-76. doi: 10.1113/jphysiol.2014.275719

    GABAergic terminals of chandelier cells exclusively innervate the axon initial segment (AIS) of excitatory neurons. Although the anatomy of these synapses has been well-studied in several brain areas, relatively little is known about their physiological properties. Using vesicular γ-aminobutyric acid transporter-channelrhodopsin 2-enhanced yellow fluorescence protein (VGAT-ChR2-YFP)-expressing mice and a novel fibreoptic 'laserspritzer' approach that we developed, we investigated the physiological properties of axo-axonic synapses (AASs) in brain slices from the piriform cortex (PC) of mice. AASs were in close proximity to voltage-gated Na(+) (NaV) channels located at the AIS. AASs were selectively activated by a 5 μm laserspritzer placed in close proximity to the AIS. Under a minimal laser stimulation condition and using whole-cell somatic voltage-clamp recordings, the amplitudes and kinetics of IPSCs mediated by AASs were similar to those mediated by perisomatic inhibitions. Results were further validated with channelrhodopsin 2-assisted circuit mapping (CRACM) of the entire inhibitory inputs map. For the first time, we revealed that the laserspritzer-induced AAS-IPSCs persisted in the presence of TTX and TEA but not 4-AP. Next, using gramicidin-based perforated patch recordings, we found that the GABA reversal potential (EGABA) was -73.6 ± 1.2 mV when induced at the AIS and -72.8 ± 1.1 mV when induced at the perisomatic site. Our anatomical and physiological results lead to the novel conclusions that: (1) AASs innervate the entire length of the AIS, as opposed to forming a highly concentrated cartridge, (2) AAS inhibition suppresses action potentials and epileptiform activity more robustly than perisomatic inhibitions, and (3) AAS activation alone can be sufficient to inhibit action potential generation and epileptiform activities in vitro.

    View Publication Page