Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
general_search_page-panel_pane_1 | views_panes

25 Publications

Showing 11-20 of 25 results
Your Criteria:
    Zuker Lab
    11/16/06 | The receptors and cells for mammalian taste.
    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS
    Nature. 2006 Nov 16;444(7117):288-94. doi: 10.1038/nature05401

    The emerging picture of taste coding at the periphery is one of elegant simplicity. Contrary to what was generally believed, it is now clear that distinct cell types expressing unique receptors are tuned to detect each of the five basic tastes: sweet, sour, bitter, salty and umami. Importantly, receptor cells for each taste quality function as dedicated sensors wired to elicit stereotypic responses.

    View Publication Page
    Zuker Lab
    10/12/06 | Transforming the architecture of compound eyes.
    Zelhof AC, Hardy RW, Becker A, Zuker CS
    Nature. 2006 Oct 12;443(7112):696-9. doi: 10.1038/nature05128

    Eyes differ markedly in the animal kingdom, and are an extreme example of the evolution of multiple anatomical solutions to light detection and image formation. A salient feature of all photoreceptor cells is the presence of a specialized compartment (disc outer segments in vertebrates, and microvillar rhabdomeres in insects), whose primary role is to accommodate the millions of light receptor molecules required for efficient photon collection. In insects, compound eyes can have very different inner architectures. Fruitflies and houseflies have an open rhabdom system, in which the seven rhabdomeres of each ommatidium are separated from each other and function as independent light guides. In contrast, bees and various mosquitoes and beetle species have a closed system, in which rhabdomeres within each ommatidium are fused to each other, thus sharing the same visual axis. To understand the transition between open and closed rhabdom systems, we isolated and characterized the role of Drosophila genes involved in rhabdomere assembly. Here we show that Spacemaker, a secreted protein expressed only in the eyes of insects with open rhabdom systems, acts together with Prominin and the cell adhesion molecule Chaoptin to choreograph the partitioning of rhabdomeres into an open system. Furthermore, the complete loss of spacemaker (spam) converts an open rhabdom system to a closed one, whereas its targeted expression to photoreceptors of a closed system markedly reorganizes the architecture of the compound eyes to resemble an open system. Our results provide a molecular atlas for the construction of microvillar assemblies and illustrate the critical effect of differences in a single structural protein in morphogenesis.

    View Publication Page
    Zuker Lab
    08/24/06 | The cells and logic for mammalian sour taste detection.
    Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, Ryba NJ, Zuker CS
    Nature. 2006 Aug 24;442(7105):934-8. doi: 10.1038/nature05084

    Mammals taste many compounds yet use a sensory palette consisting of only five basic taste modalities: sweet, bitter, sour, salty and umami (the taste of monosodium glutamate). Although this repertoire may seem modest, it provides animals with critical information about the nature and quality of food. Sour taste detection functions as an important sensory input to warn against the ingestion of acidic (for example, spoiled or unripe) food sources. We have used a combination of bioinformatics, genetic and functional studies to identify PKD2L1, a polycystic-kidney-disease-like ion channel, as a candidate mammalian sour taste sensor. In the tongue, PKD2L1 is expressed in a subset of taste receptor cells distinct from those responsible for sweet, bitter and umami taste. To examine the role of PKD2L1-expressing taste cells in vivo, we engineered mice with targeted genetic ablations of selected populations of taste receptor cells. Animals lacking PKD2L1-expressing cells are completely devoid of taste responses to sour stimuli. Notably, responses to all other tastants remained unaffected, proving that the segregation of taste qualities even extends to ionic stimuli. Our results now establish independent cellular substrates for four of the five basic taste modalities, and support a comprehensive labelled-line mode of taste coding at the periphery. Notably, PKD2L1 is also expressed in specific neurons surrounding the central canal of the spinal cord. Here we demonstrate that these PKD2L1-expressing neurons send projections to the central canal, and selectively trigger action potentials in response to decreases in extracellular pH. We propose that these cells correspond to the long-sought components of the cerebrospinal fluid chemosensory system. Taken together, our results suggest a common basis for acid sensing in disparate physiological settings.

    View Publication Page
    Zuker Lab
    03/10/05 | The receptors and coding logic for bitter taste.
    Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ
    Nature. 2005 Mar 10;434(7030):225-9. doi: 10.1038/nature03352

    The sense of taste provides animals with valuable information about the nature and quality of food. Bitter taste detection functions as an important sensory input to warn against the ingestion of toxic and noxious substances. T2Rs are a family of approximately 30 highly divergent G-protein-coupled receptors (GPCRs) that are selectively expressed in the tongue and palate epithelium and are implicated in bitter taste sensing. Here we demonstrate, using a combination of genetic, behavioural and physiological studies, that T2R receptors are necessary and sufficient for the detection and perception of bitter compounds, and show that differences in T2Rs between species (human and mouse) can determine the selectivity of bitter taste responses. In addition, we show that mice engineered to express a bitter taste receptor in ’sweet cells’ become strongly attracted to its cognate bitter tastants, whereas expression of the same receptor (or even a novel GPCR) in T2R-expressing cells resulted in mice that are averse to the respective compounds. Together these results illustrate the fundamental principle of bitter taste coding at the periphery: dedicated cells act as broadly tuned bitter sensors that are wired to mediate behavioural aversion.

    View Publication Page
    Zuker Lab
    05/14/04 | Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis.
    Avidor-Reiss T, Maer AM, Koundakjian E, Polyanovsky A, Keil T, Subramaniam S, Zuker CS
    Cell. 2004 May 14;117(4):527-39

    The evolution of the ancestral eukaryotic flagellum is an example of a cellular organelle that became dispensable in some modern eukaryotes while remaining an essential motile and sensory apparatus in others. To help define the repertoire of specialized proteins needed for the formation and function of cilia, we used comparative genomics to analyze the genomes of organisms with prototypical cilia, modified cilia, or no cilia and identified approximately 200 genes that are absent in the genomes of nonciliated eukaryotes but are conserved in ciliated organisms. Importantly, over 80% of the known ancestral proteins involved in cilia function are included in this small collection. Using Drosophila as a model system, we then characterized a novel family of proteins (OSEGs: outer segment) essential for ciliogenesis. We show that osegs encode components of a specialized transport pathway unique to the cilia compartment and are related to prototypical intracellular transport proteins.

    View Publication Page
    Zuker Lab
    10/31/03 | The receptors for mammalian sweet and umami taste.
    Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS
    Cell. 2003 Oct 31;115(3):255-66

    Sweet and umami (the taste of monosodium glutamate) are the main attractive taste modalities in humans. T1Rs are candidate mammalian taste receptors that combine to assemble two heteromeric G-protein-coupled receptor complexes: T1R1+3, an umami sensor, and T1R2+3, a sweet receptor. We now report the behavioral and physiological characterization of T1R1, T1R2, and T1R3 knockout mice. We demonstrate that sweet and umami taste are strictly dependent on T1R-receptors, and show that selective elimination of T1R-subunits differentially abolishes detection and perception of these two taste modalities. To examine the basis of sweet tastant recognition and coding, we engineered animals expressing either the human T1R2-receptor (hT1R2), or a modified opioid-receptor (RASSL) in sweet cells. Expression of hT1R2 in mice generates animals with humanized sweet taste preferences, while expression of RASSL drives strong attraction to a synthetic opiate, demonstrating that sweet cells trigger dedicated behavioral outputs, but their tastant selectivity is determined by the nature of the receptors.

    View Publication Page
    Zuker Lab
    02/07/03 | Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways.
    Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ
    Cell. 2003 Feb 7;112(3):293-301

    Mammals can taste a wide repertoire of chemosensory stimuli. Two unrelated families of receptors (T1Rs and T2Rs) mediate responses to sweet, amino acids, and bitter compounds. Here, we demonstrate that knockouts of TRPM5, a taste TRP ion channel, or PLCbeta2, a phospholipase C selectively expressed in taste tissue, abolish sweet, amino acid, and bitter taste reception, but do not impact sour or salty tastes. Therefore, despite relying on different receptors, sweet, amino acid, and bitter transduction converge on common signaling molecules. Using PLCbeta2 taste-blind animals, we then examined a fundamental question in taste perception: how taste modalities are encoded at the cellular level. Mice engineered to rescue PLCbeta2 function exclusively in bitter-receptor expressing cells respond normally to bitter tastants but do not taste sweet or amino acid stimuli. Thus, bitter is encoded independently of sweet and amino acids, and taste receptor cells are not broadly tuned across these modalities.

    View Publication Page
    Zuker Lab
    03/14/02 | An amino-acid taste receptor.
    Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS
    Nature. 2002 Mar 14;416:199-202. doi: 10.1038/nature726

    The sense of taste provides animals with valuable information about the nature and quality of food. Mammals can recognize and respond to a diverse repertoire of chemical entities, including sugars, salts, acids and a wide range of toxic substances. Several amino acids taste sweet or delicious (umami) to humans, and are attractive to rodents and other animals. This is noteworthy because L-amino acids function as the building blocks of proteins, as biosynthetic precursors of many biologically relevant small molecules, and as metabolic fuel. Thus, having a taste pathway dedicated to their detection probably had significant evolutionary implications. Here we identify and characterize a mammalian amino-acid taste receptor. This receptor, T1R1+3, is a heteromer of the taste-specific T1R1 and T1R3 G-protein-coupled receptors. We demonstrate that T1R1 and T1R3 combine to function as a broadly tuned L-amino-acid sensor responding to most of the 20 standard amino acids, but not to their D-enantiomers or other compounds. We also show that sequence differences in T1R receptors within and between species (human and mouse) can significantly influence the selectivity and specificity of taste responses.

    View Publication Page
    Zuker Lab
    08/10/01 | Mammalian sweet taste receptors.
    Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS
    Cell. 2001 Aug 10;106(3):381-90

    The sense of taste provides animals with valuable information about the quality and nutritional value of food. Previously, we identified a large family of mammalian taste receptors involved in bitter taste perception (the T2Rs). We now report the characterization of mammalian sweet taste receptors. First, transgenic rescue experiments prove that the Sac locus encodes T1R3, a member of the T1R family of candidate taste receptors. Second, using a heterologous expression system, we demonstrate that T1R2 and T1R3 combine to function as a sweet receptor, recognizing sweet-tasting molecules as diverse as sucrose, saccharin, dulcin, and acesulfame-K. Finally, we present a detailed analysis of the patterns of expression of T1Rs and T2Rs, thus providing a view of the representation of sweet and bitter taste at the periphery.

    View Publication Page
    Zuker Lab
    03/09/01 | A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila.
    Scott K, Brady R, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R
    Cell. 2001 Mar 9;104(5):661-73

    A novel family of candidate gustatory receptors (GRs) was recently identified in searches of the Drosophila genome. We have performed in situ hybridization and transgene experiments that reveal expression of these genes in both gustatory and olfactory neurons in adult flies and larvae. This gene family is likely to encode both odorant and taste receptors. We have visualized the projections of chemosensory neurons in the larval brain and observe that neurons expressing different GRs project to discrete loci in the antennal lobe and subesophageal ganglion. These data provide insight into the diversity of chemosensory recognition and an initial view of the representation of gustatory information in the fly brain.

    View Publication Page