Filter
Associated Lab
- Ahrens Lab (39) Apply Ahrens Lab filter
- Aso Lab (37) Apply Aso Lab filter
- Baker Lab (19) Apply Baker Lab filter
- Betzig Lab (97) Apply Betzig Lab filter
- Beyene Lab (3) Apply Beyene Lab filter
- Bock Lab (14) Apply Bock Lab filter
- Branson Lab (42) Apply Branson Lab filter
- Card Lab (30) Apply Card Lab filter
- Cardona Lab (44) Apply Cardona Lab filter
- Chklovskii Lab (10) Apply Chklovskii Lab filter
- Clapham Lab (10) Apply Clapham Lab filter
- Cui Lab (19) Apply Cui Lab filter
- Darshan Lab (7) Apply Darshan Lab filter
- Dickson Lab (32) Apply Dickson Lab filter
- Druckmann Lab (21) Apply Druckmann Lab filter
- Dudman Lab (33) Apply Dudman Lab filter
- Eddy/Rivas Lab (30) Apply Eddy/Rivas Lab filter
- Egnor Lab (4) Apply Egnor Lab filter
- Espinosa Medina Lab (11) Apply Espinosa Medina Lab filter
- Feliciano Lab (6) Apply Feliciano Lab filter
- Fetter Lab (31) Apply Fetter Lab filter
- Fitzgerald Lab (13) Apply Fitzgerald Lab filter
- Freeman Lab (15) Apply Freeman Lab filter
- Funke Lab (31) Apply Funke Lab filter
- Gonen Lab (59) Apply Gonen Lab filter
- Grigorieff Lab (34) Apply Grigorieff Lab filter
- Harris Lab (46) Apply Harris Lab filter
- Heberlein Lab (13) Apply Heberlein Lab filter
- Hermundstad Lab (16) Apply Hermundstad Lab filter
- Hess Lab (63) Apply Hess Lab filter
- Jayaraman Lab (38) Apply Jayaraman Lab filter
- Ji Lab (32) Apply Ji Lab filter
- Johnson Lab (1) Apply Johnson Lab filter
- Karpova Lab (13) Apply Karpova Lab filter
- Keleman Lab (8) Apply Keleman Lab filter
- Keller Lab (59) Apply Keller Lab filter
- Lavis Lab (116) Apply Lavis Lab filter
- Lee (Albert) Lab (29) Apply Lee (Albert) Lab filter
- Leonardo Lab (19) Apply Leonardo Lab filter
- Li Lab (1) Apply Li Lab filter
- Lippincott-Schwartz Lab (79) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (50) Apply Liu (Zhe) Lab filter
- Looger Lab (136) Apply Looger Lab filter
- Magee Lab (31) Apply Magee Lab filter
- Menon Lab (12) Apply Menon Lab filter
- Murphy Lab (6) Apply Murphy Lab filter
- O'Shea Lab (3) Apply O'Shea Lab filter
- Pachitariu Lab (23) Apply Pachitariu Lab filter
- Pastalkova Lab (5) Apply Pastalkova Lab filter
- Pavlopoulos Lab (7) Apply Pavlopoulos Lab filter
- Pedram Lab (1) Apply Pedram Lab filter
- Podgorski Lab (16) Apply Podgorski Lab filter
- Reiser Lab (40) Apply Reiser Lab filter
- Riddiford Lab (20) Apply Riddiford Lab filter
- Romani Lab (28) Apply Romani Lab filter
- Rubin Lab (98) Apply Rubin Lab filter
- Saalfeld Lab (39) Apply Saalfeld Lab filter
- Scheffer Lab (36) Apply Scheffer Lab filter
- Schreiter Lab (42) Apply Schreiter Lab filter
- Shroff Lab (12) Apply Shroff Lab filter
- Simpson Lab (18) Apply Simpson Lab filter
- Singer Lab (36) Apply Singer Lab filter
- Spruston Lab (55) Apply Spruston Lab filter
- Stern Lab (64) Apply Stern Lab filter
- Sternson Lab (47) Apply Sternson Lab filter
- Stringer Lab (18) Apply Stringer Lab filter
- Svoboda Lab (130) Apply Svoboda Lab filter
- Tebo Lab (4) Apply Tebo Lab filter
- Tervo Lab (9) Apply Tervo Lab filter
- Tillberg Lab (12) Apply Tillberg Lab filter
- Tjian Lab (17) Apply Tjian Lab filter
- Truman Lab (58) Apply Truman Lab filter
- Turaga Lab (32) Apply Turaga Lab filter
- Turner Lab (23) Apply Turner Lab filter
- Vale Lab (3) Apply Vale Lab filter
- Wang (Meng) Lab (2) Apply Wang (Meng) Lab filter
- Wang (Shaohe) Lab (1) Apply Wang (Shaohe) Lab filter
- Wu Lab (8) Apply Wu Lab filter
- Zlatic Lab (26) Apply Zlatic Lab filter
- Zuker Lab (5) Apply Zuker Lab filter
Associated Project Team
- CellMap (1) Apply CellMap filter
- COSEM (3) Apply COSEM filter
- Fly Descending Interneuron (9) Apply Fly Descending Interneuron filter
- Fly Functional Connectome (14) Apply Fly Functional Connectome filter
- Fly Olympiad (5) Apply Fly Olympiad filter
- FlyEM (48) Apply FlyEM filter
- FlyLight (45) Apply FlyLight filter
- GENIE (37) Apply GENIE filter
- Larval Olympiad (2) Apply Larval Olympiad filter
- MouseLight (15) Apply MouseLight filter
- NeuroSeq (1) Apply NeuroSeq filter
- ThalamoSeq (1) Apply ThalamoSeq filter
- Tool Translation Team (T3) (17) Apply Tool Translation Team (T3) filter
- Transcription Imaging (45) Apply Transcription Imaging filter
Publication Date
- 2023 (175) Apply 2023 filter
- 2022 (169) Apply 2022 filter
- 2021 (174) Apply 2021 filter
- 2020 (178) Apply 2020 filter
- 2019 (177) Apply 2019 filter
- 2018 (206) Apply 2018 filter
- 2017 (186) Apply 2017 filter
- 2016 (191) Apply 2016 filter
- 2015 (195) Apply 2015 filter
- 2014 (190) Apply 2014 filter
- 2013 (136) Apply 2013 filter
- 2012 (112) Apply 2012 filter
- 2011 (98) Apply 2011 filter
- 2010 (61) Apply 2010 filter
- 2009 (56) Apply 2009 filter
- 2008 (40) Apply 2008 filter
- 2007 (21) Apply 2007 filter
- 2006 (3) Apply 2006 filter
Type of Publication
- Remove Janelia filter Janelia
2368 Publications
Showing 71-80 of 2368 resultsThere is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single neuron responses can be well described by relatively few patterns of neural co-modulation. The study of such low-dimensional structure of neural population activity has provided important insights into how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction techniques to estimate these population-wide co-modulation patterns, constraining them to a flat "neural manifold". Here, we hypothesised that since neurons have nonlinear responses and make thousands of distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should be intrinsically nonlinear. Combining neural population recordings from monkey motor cortex, mouse motor cortex, mouse striatum, and human motor cortex, we show that: 1) neural manifolds are intrinsically nonlinear; 2) the degree of their nonlinearity varies across architecturally distinct brain regions; and 3) manifold nonlinearity becomes more evident during complex tasks that require more varied activity patterns. Simulations using recurrent neural network models confirmed the proposed relationship between circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and properly accounting for such nonlinearities will be critical as neuroscientists move towards studying numerous brain regions involved in increasingly complex and naturalistic behaviours.
The growing size of EM volumes is a significant barrier to findable, accessible, interoperable, and reusable (FAIR) sharing. Storage, sharing, visualization and processing are challenging for large datasets. Here we discuss a recent development toward the standardized storage of volume electron microscopy (vEM) data which addresses many of the issues that researchers face. The OME-Zarr format splits data into more manageable, performant chunks enabling streaming-based access, and unifies important metadata such as multiresolution pyramid descriptions. The file format is designed for centralized and remote storage (e.g., cloud storage or file system) and is therefore ideal for sharing large data. By coalescing on a common, community-wide format, these benefits will expand as ever more data is made available to the scientific community.
Targeting deep brain structures during electrophysiology and injections requires intensive training and expertise. Even with experience, researchers often can't be certain that a probe is placed precisely in a target location and this complexity scales with the number of simultaneous probes used in an experiment. Here, we present Pinpoint, open-source software that allows for interactive exploration of stereotaxic insertion plans. Once an insertion plan is created, Pinpoint allows users to save these online and share them with collaborators. 3D modeling tools allow users to explore their insertions alongside rig and implant hardware and ensure plans are physically possible. Probes in Pinpoint can be linked to electronic micro-manipulators allowing real-time visualization of current brain region targets alongside neural data. In addition, Pinpoint can control manipulators to automate and parallelize the insertion process. Compared to previously available software, Pinpoint's easy access through web browsers, extensive features, and real-time experiment integration enable more efficient and reproducible recordings.
Single molecule localization microscopy relies on the precise quantification of the position of single dye emitters in a sample. This precision is improved by the number of photons that can be detected from each molecule. Particularly recording at cryogenic temperatures dramatically reduces photobleaching and would, hence, in principle, allow the user to massively increase the illumination time to several seconds. The downside of long illuminations, however, would be image blur due to inevitable jitter or drift occurring during the illuminations, which deteriorates the localization precision. In this paper, we theoretically demonstrate that a parallel recording of the fiducial marker beads together with a fitting approach accounting for the full drift trajectory allows for largely eliminating drift effects for drift magnitudes of several hundred nanometers per frame. We showcase the method for linear and diffusional drift as well as oscillations, assuming fixed dipole orientations during each illumination.
The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body. Using Drosophila melanogaster as a model, we employ genetic and chemical tools to engineer changes to circuit development. These allow us to produce living animals with hypothesis-driven variations on natural expansion layer wiring parameters. We then test the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input density, but not cell number, tunes neuronal odor selectivity. Simple odor discrimination behavior is maintained when the Kenyon cell number is reduced and augmented by Kenyon cell number expansion. Animals with increased input density to each Kenyon cell show increased overlap in Kenyon cell odor responses and become worse at odor discrimination tasks.
Life exists in three dimensions, but until the turn of the century most electron microscopy methods provided only 2D image data. Recently, electron microscopy techniques capable of delving deep into the structure of cells and tissues have emerged, collectively called volume electron microscopy (vEM). Developments in vEM have been dubbed a quiet revolution as the field evolved from established transmission and scanning electron microscopy techniques, so early publications largely focused on the bioscience applications rather than the underlying technological breakthroughs. However, with an explosion in the uptake of vEM across the biosciences and fast-paced advances in volume, resolution, throughput and ease of use, it is timely to introduce the field to new audiences. In this Primer, we introduce the different vEM imaging modalities, the specialized sample processing and image analysis pipelines that accompany each modality and the types of information revealed in the data. We showcase key applications in the biosciences where vEM has helped make breakthrough discoveries and consider limitations and future directions. We aim to show new users how vEM can support discovery science in their own research fields and inspire broader uptake of the technology, finally allowing its full adoption into mainstream biological imaging.
Whereas progress has been made in the identification of neural signals related to rapid, cued decisions, less is known about how brains guide and terminate more ethologically relevant decisions in which an animal's own behaviour governs the options experienced over minutes. Drosophila search for many seconds to minutes for egg-laying sites with high relative value and have neurons, called oviDNs, whose activity fulfills necessity and sufficiency criteria for initiating the egg-deposition motor programme. Here we show that oviDNs express a calcium signal that (1) dips when an egg is internally prepared (ovulated), (2) drifts up and down over seconds to minutes-in a manner influenced by the relative value of substrates-as a fly determines whether to lay an egg and (3) reaches a consistent peak level just before the abdomen bend for egg deposition. This signal is apparent in the cell bodies of oviDNs in the brain and it probably reflects a behaviourally relevant rise-to-threshold process in the ventral nerve cord, where the synaptic terminals of oviDNs are located and where their output can influence behaviour. We provide perturbational evidence that the egg-deposition motor programme is initiated once this process hits a threshold and that subthreshold variation in this process regulates the time spent considering options and, ultimately, the choice taken. Finally, we identify a small recurrent circuit that feeds into oviDNs and show that activity in each of its constituent cell types is required for laying an egg. These results argue that a rise-to-threshold process regulates a relative-value, self-paced decision and provide initial insight into the underlying circuit mechanism for building this process.
Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×10 chemical synapses between ∼130,000 neurons reconstructed from a female . The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species.
Sparse coding is thought to improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's advantages. Similar sensory stimuli have significant overlap, and responses vary across trials. To elucidate the effect of these two factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination --- the Mushroom Body (MB) and the Piriform Cortex (PCx). In both species, we show that neuronal responses fall along a continuum from extremely reliable across trials to extremely variable or stochastic. Computationally, we show that the range of observed variability arises from probabilistic synapses in inhibitory feedback connections within central circuits rather than sensory noise, as is traditionally assumed. We propose this coding scheme to be advantageous for coarse- and fine-odor discrimination. More reliable cells enable quick discrimination between dissimilar odors. For similar odors, however, these cells overlap, and do not provide distinguishing information. By contrast, more unreliable cells are decorrelated for similar odors, providing distinguishing information, though this requires extended training with more trials. Overall, we have uncovered a stochastic coding scheme that is conserved in vertebrates and invertebrates, and we identify a candidate mechanism, based on variability in a winner-take-all inhibitory circuit, that improves discrimination with training.
Training spiking recurrent neural networks on neuronal recordings or behavioral tasks has become a prominent tool to study computations in the brain. With an increasing size and complexity of neural recordings, there is a need for fast algorithms that can scale to large datasets. We present optimized CPU and GPU implementations of the recursive least-squares algorithm in spiking neural networks. The GPU implementation allows training networks to reproduce neural activity of an order of millions neurons at order of magnitude times faster than the CPU implementation. We demonstrate this by applying our algorithm to reproduce the activity of > 66, 000 recorded neurons of a mouse performing a decision-making task. The fast implementation enables efficient training of large-scale spiking models, thus allowing for in-silico study of the dynamics and connectivity underlying multi-area computations.