Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

2368 Publications

Showing 71-80 of 2368 results
Your Criteria:
    07/21/23 | Nonlinear manifolds underlie neural population activity during behaviour.
    Fortunato C, Bennasar-Vázquez J, Park J, Chang JC, Miller LE, Dudman JT, Perich MG, Gallego JA
    bioRxiv. 2023 Jul 21:. doi: 10.1101/2023.07.18.549575

    There is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single neuron responses can be well described by relatively few patterns of neural co-modulation. The study of such low-dimensional structure of neural population activity has provided important insights into how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction techniques to estimate these population-wide co-modulation patterns, constraining them to a flat "neural manifold". Here, we hypothesised that since neurons have nonlinear responses and make thousands of distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should be intrinsically nonlinear. Combining neural population recordings from monkey motor cortex, mouse motor cortex, mouse striatum, and human motor cortex, we show that: 1) neural manifolds are intrinsically nonlinear; 2) the degree of their nonlinearity varies across architecturally distinct brain regions; and 3) manifold nonlinearity becomes more evident during complex tasks that require more varied activity patterns. Simulations using recurrent neural network models confirmed the proposed relationship between circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and properly accounting for such nonlinearities will be critical as neuroscientists move towards studying numerous brain regions involved in increasingly complex and naturalistic behaviours.

    View Publication Page
    07/20/23 | Toward scalable reuse of vEM data: OME-Zarr to the rescue.
    Rzepka N, Bogovic JA, Moore JA
    Methods in Cell Biology. 2023 Jul 20;177:359-387. doi: 10.1016/bs.mcb.2023.01.016

    The growing size of EM volumes is a significant barrier to findable, accessible, interoperable, and reusable (FAIR) sharing. Storage, sharing, visualization and processing are challenging for large datasets. Here we discuss a recent development toward the standardized storage of volume electron microscopy (vEM) data which addresses many of the issues that researchers face. The OME-Zarr format splits data into more manageable, performant chunks enabling streaming-based access, and unifies important metadata such as multiresolution pyramid descriptions. The file format is designed for centralized and remote storage (e.g., cloud storage or file system) and is therefore ideal for sharing large data. By coalescing on a common, community-wide format, these benefits will expand as ever more data is made available to the scientific community.

    View Publication Page
    07/15/23 | Pinpoint: trajectory planning for multi-probe electrophysiology and injections in an interactive web-based 3D environment
    Daniel Birman , Kenneth J. Yang , Steven J. West , Bill Karsh , Yoni Browning , the International Brain Laboratory , Joshua H. Siegle , Nicholas A. Steinmetz
    bioRxiv. 2023 Jul 15:. doi: 10.1101/2023.07.14.548952

    Targeting deep brain structures during electrophysiology and injections requires intensive training and expertise. Even with experience, researchers often can't be certain that a probe is placed precisely in a target location and this complexity scales with the number of simultaneous probes used in an experiment. Here, we present Pinpoint, open-source software that allows for interactive exploration of stereotaxic insertion plans. Once an insertion plan is created, Pinpoint allows users to save these online and share them with collaborators. 3D modeling tools allow users to explore their insertions alongside rig and implant hardware and ensure plans are physically possible. Probes in Pinpoint can be linked to electronic micro-manipulators allowing real-time visualization of current brain region targets alongside neural data. In addition, Pinpoint can control manipulators to automate and parallelize the insertion process. Compared to previously available software, Pinpoint's easy access through web browsers, extensive features, and real-time experiment integration enable more efficient and reproducible recordings.

    View Publication Page
    07/13/23 | Localization of fixed dipoles at high precision by accounting for sample drift during illumination
    Hinterer F, Schneider MC, Hubmer S, López-Martínez M, Ramlau R, Schütz GJ
    Applied Physics Letters. 2023 Jul 13;123(2):. doi: 10.1063/5.0137834

    Single molecule localization microscopy relies on the precise quantification of the position of single dye emitters in a sample. This precision is improved by the number of photons that can be detected from each molecule. Particularly recording at cryogenic temperatures dramatically reduces photobleaching and would, hence, in principle, allow the user to massively increase the illumination time to several seconds. The downside of long illuminations, however, would be image blur due to inevitable jitter or drift occurring during the illuminations, which deteriorates the localization precision. In this paper, we theoretically demonstrate that a parallel recording of the fiducial marker beads together with a fitting approach accounting for the full drift trajectory allows for largely eliminating drift effects for drift magnitudes of several hundred nanometers per frame. We showcase the method for linear and diffusional drift as well as oscillations, assuming fixed dipole orientations during each illumination.

    View Publication Page
    07/10/23 | Input density tunes Kenyon cell sensory responses in the Drosophila mushroom body.
    Ahmed M, Rajagopalan AE, Pan Y, Li Y, Williams DL, Pedersen EA, Thakral M, Previero A, Close KC, Christoforou CP, Cai D, Turner GC, Clowney EJ
    Current Biology. 2023 Jul 10;33(13):2742-2760.e12. doi: 10.1016/j.cub.2023.05.064

    The ability to discriminate sensory stimuli with overlapping features is thought to arise in brain structures called expansion layers, where neurons carrying information about sensory features make combinatorial connections onto a much larger set of cells. For 50 years, expansion coding has been a prime topic of theoretical neuroscience, which seeks to explain how quantitative parameters of the expansion circuit influence sensory sensitivity, discrimination, and generalization. Here, we investigate the developmental events that produce the quantitative parameters of the arthropod expansion layer, called the mushroom body. Using Drosophila melanogaster as a model, we employ genetic and chemical tools to engineer changes to circuit development. These allow us to produce living animals with hypothesis-driven variations on natural expansion layer wiring parameters. We then test the functional and behavioral consequences. By altering the number of expansion layer neurons (Kenyon cells) and their dendritic complexity, we find that input density, but not cell number, tunes neuronal odor selectivity. Simple odor discrimination behavior is maintained when the Kenyon cell number is reduced and augmented by Kenyon cell number expansion. Animals with increased input density to each Kenyon cell show increased overlap in Kenyon cell odor responses and become worse at odor discrimination tasks.

    View Publication Page
    07/07/23 | Volume electron microscopy.
    Peddie CJ, Genoud C, Kreshuk A, Meechan K, Micheva KD, Narayan K, Pape C, Parton RG, Schieber NL, Schwab Y, Titze B, Verkade P, Aubrey A, Collinson LM
    Nature Reviews: Methods Primers. 2022 Jul 07;2:51. doi: 10.1038/s43586-022-00131-9

    Life exists in three dimensions, but until the turn of the century most electron microscopy methods provided only 2D image data. Recently, electron microscopy techniques capable of delving deep into the structure of cells and tissues have emerged, collectively called volume electron microscopy (vEM). Developments in vEM have been dubbed a quiet revolution as the field evolved from established transmission and scanning electron microscopy techniques, so early publications largely focused on the bioscience applications rather than the underlying technological breakthroughs. However, with an explosion in the uptake of vEM across the biosciences and fast-paced advances in volume, resolution, throughput and ease of use, it is timely to introduce the field to new audiences. In this Primer, we introduce the different vEM imaging modalities, the specialized sample processing and image analysis pipelines that accompany each modality and the types of information revealed in the data. We showcase key applications in the biosciences where vEM has helped make breakthrough discoveries and consider limitations and future directions. We aim to show new users how vEM can support discovery science in their own research fields and inspire broader uptake of the technology, finally allowing its full adoption into mainstream biological imaging.

    View Publication Page
    07/05/23 | A rise-to-threshold process for a relative-value decision.
    Vijayan V, Wang F, Wang K, Chakravorty A, Adachi A, Akhlaghpour H, Dickson BJ, Maimon G
    Nature. 2023 Jul 05;619(7970):563-571. doi: 10.1038/s41586-023-06271-6

    Whereas progress has been made in the identification of neural signals related to rapid, cued decisions, less is known about how brains guide and terminate more ethologically relevant decisions in which an animal's own behaviour governs the options experienced over minutes. Drosophila search for many seconds to minutes for egg-laying sites with high relative value and have neurons, called oviDNs, whose activity fulfills necessity and sufficiency criteria for initiating the egg-deposition motor programme. Here we show that oviDNs express a calcium signal that (1) dips when an egg is internally prepared (ovulated), (2) drifts up and down over seconds to minutes-in a manner influenced by the relative value of substrates-as a fly determines whether to lay an egg and (3) reaches a consistent peak level just before the abdomen bend for egg deposition. This signal is apparent in the cell bodies of oviDNs in the brain and it probably reflects a behaviourally relevant rise-to-threshold process in the ventral nerve cord, where the synaptic terminals of oviDNs are located and where their output can influence behaviour. We provide perturbational evidence that the egg-deposition motor programme is initiated once this process hits a threshold and that subthreshold variation in this process regulates the time spent considering options and, ultimately, the choice taken. Finally, we identify a small recurrent circuit that feeds into oviDNs and show that activity in each of its constituent cell types is required for laying an egg. These results argue that a rise-to-threshold process regulates a relative-value, self-paced decision and provide initial insight into the underlying circuit mechanism for building this process.

    View Publication Page
    06/29/23 | Neuronal wiring diagram of an adult brain.
    Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu S, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro M, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GS, Seung HS, Murthy M, FlyWire Consortium
    bioRxiv. 2023 Jun 29:. doi: 10.1101/2023.06.27.546656

    Connections between neurons can be mapped by acquiring and analyzing electron microscopic (EM) brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, yet inadequate for understanding brain function more globally. Here, we present the first neuronal wiring diagram of a whole adult brain, containing 5×10 chemical synapses between ∼130,000 neurons reconstructed from a female . The resource also incorporates annotations of cell classes and types, nerves, hemilineages, and predictions of neurotransmitter identities. Data products are available by download, programmatic access, and interactive browsing and made interoperable with other fly data resources. We show how to derive a projectome, a map of projections between regions, from the connectome. We demonstrate the tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine, and descending neurons), across both hemispheres, and between the central brain and the optic lobes. Tracing from a subset of photoreceptors all the way to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviors. The technologies and open ecosystem of the FlyWire Consortium set the stage for future large-scale connectome projects in other species.

    View Publication Page
    06/29/23 | Stochastic coding: a conserved feature of odor representations and its implications for odor discrimination
    Shyam Srinivasan , Simon Daste , Mehrab Modi , Glenn Turner , Alexander Fleischmann , Saket Navlakha
    bioRxiv. 2023 Jun 29:. doi: 10.1101/2023.06.27.546757

    Sparse coding is thought to improve discrimination of sensory stimuli by reducing overlap between their representations. Two factors, however, can offset sparse coding's advantages. Similar sensory stimuli have significant overlap, and responses vary across trials. To elucidate the effect of these two factors, we analyzed odor responses in the fly and mouse olfactory regions implicated in learning and discrimination --- the Mushroom Body (MB) and the Piriform Cortex (PCx). In both species, we show that neuronal responses fall along a continuum from extremely reliable across trials to extremely variable or stochastic. Computationally, we show that the range of observed variability arises from probabilistic synapses in inhibitory feedback connections within central circuits rather than sensory noise, as is traditionally assumed. We propose this coding scheme to be advantageous for coarse- and fine-odor discrimination. More reliable cells enable quick discrimination between dissimilar odors. For similar odors, however, these cells overlap, and do not provide distinguishing information. By contrast, more unreliable cells are decorrelated for similar odors, providing distinguishing information, though this requires extended training with more trials. Overall, we have uncovered a stochastic coding scheme that is conserved in vertebrates and invertebrates, and we identify a candidate mechanism, based on variability in a winner-take-all inhibitory circuit, that improves discrimination with training.

    View Publication Page
    06/27/23 | A scalable implementation of the recursive least-squares algorithm for training spiking neural networks
    Benjamin J. Arthur , Christopher M. Kim , Susu Chen , Stephan Preibisch , Ran Darshan
    Frontiers in Neuroinformatics. 2023 Jun 27:. doi: 10.3389/fninf.2023.1099510

    Training spiking recurrent neural networks on neuronal recordings or behavioral tasks has become a prominent tool to study computations in the brain. With an increasing size and complexity of neural recordings, there is a need for fast algorithms that can scale to large datasets. We present optimized CPU and GPU implementations of the recursive least-squares algorithm in spiking neural networks. The GPU implementation allows training networks to reproduce neural activity of an order of millions neurons at order of magnitude times faster than the CPU implementation. We demonstrate this by applying our algorithm to reproduce the activity of > 66, 000 recorded neurons of a mouse performing a decision-making task. The fast implementation enables efficient training of large-scale spiking models, thus allowing for in-silico study of the dynamics and connectivity underlying multi-area computations.

    View Publication Page