Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

1416 Publications

Showing 1231-1240 of 1416 results
Your Criteria:
    08/15/00 | Ecdysteroid coordinates optic lobe neurogenesis via a nitric oxide signaling pathway.
    Champlin DT, Truman JW
    Development. 2000 Aug 15;127(16):3543-51

    Proliferation of neural precursors in the optic lobe of Manduca sexta is controlled by circulating steroids and by local production of nitric oxide (NO). Diaphorase staining, anti-NO synthase (NOS) immunocytochemistry and the NO-indicator, DAF-2, show that cells throughout the optic anlage contain NOS and produce NO. Signaling via NO inhibits proliferation in the anlage. When exposed to low levels of ecdysteroid, NO production is stimulated and proliferation ceases. When steroid levels are increased, NO production begins to decrease within 15 minutes independent of RNA or protein synthesis and cells rapidly resume proliferation. Resumption of proliferation is not due simply to the removal of NO repression though, but also requires an ecdysteroid stimulatory pathway. The consequence of these opposing pathways is a sharpening of the responsiveness to the steroid, thereby facilitating a tight coordination between development of the different elements of the adult visual system.

    View Publication Page
    08/01/00 | Evolutionary developmental biology and the problem of variation.
    Stern DL
    Evolution. 2000 Aug;54(4):1079-91

    One of the oldest problems in evolutionary biology remains largely unsolved. Which mutations generate evolutionarily relevant phenotypic variation? What kinds of molecular changes do they entail? What are the phenotypic magnitudes, frequencies of origin, and pleiotropic effects of such mutations? How is the genome constructed to allow the observed abundance of phenotypic diversity? Historically, the neo-Darwinian synthesizers stressed the predominance of micromutations in evolution, whereas others noted the similarities between some dramatic mutations and evolutionary transitions to argue for macromutationism. Arguments on both sides have been biased by misconceptions of the developmental effects of mutations. For example, the traditional view that mutations of important developmental genes always have large pleiotropic effects can now be seen to be a conclusion drawn from observations of a small class of mutations with dramatic effects. It is possible that some mutations, for example, those in cis-regulatory DNA, have few or no pleiotropic effects and may be the predominant source of morphological evolution. In contrast, mutations causing dramatic phenotypic effects, although superficially similar to hypothesized evolutionary transitions, are unlikely to fairly represent the true path of evolution. Recent developmental studies of gene function provide a new way of conceptualizing and studying variation that contrasts with the traditional genetic view that was incorporated into neo-Darwinian theory and population genetics. This new approach in developmental biology is as important for microevolutionary studies as the actual results from recent evolutionary developmental studies. In particular, this approach will assist in the task of identifying the specific mutations generating phenotypic variation and elucidating how they alter gene function. These data will provide the current missing link between molecular and phenotypic variation in natural populations.

    View Publication Page
    08/01/00 | Genetic control of acute ethanol-induced behaviors in Drosophila.
    Singh CM, Heberlein U
    Alcoholism, Clinical and Experimental Research. 2000 Aug;24(8):1127-36

    BACKGROUND: In most organisms in which acute ethanol exposure has been studied, it leads to similar changes in behavior. Generally, low ethanol doses activate the central nervous system, whereas high doses are sedative. Sensitivity to the acute intoxicating effects of ethanol is in part under genetic control in rodents and humans, and reduced sensitivity in humans predicts the development of alcoholism (Crabbe et al., 1994; Schuckit, 1994). We have established Drosophila melanogaster as a model organism to study the mechanisms that regulate acute sensitivity to ethanol.

    METHODS: We measured the effects of ethanol vapor on Drosophila locomotor behaviors by using three different assays. Horizontal locomotion was quantified in a locomotor chamber, turning behavior was assayed in narrow tubes, and ethanol-induced loss of postural control was measured in an inebriometer. Mutants with altered sensitivity to the acute effects of ethanol were generated by treatment with ethyl methane sulfonate and isolated by selection in the inebriometer. We ascertained the effects of these mutations on ethanol pharmacokinetics by measuring ethanol levels in extracts of flies at various times during and after ethanol exposure.

    RESULTS: Among nearly 30,000 potentially mutant flies tested, we isolated 19 mutant strains with reduced and 4 strains with increased sensitivity to the acute effects of ethanol as measured in the inebriometer. Of these mutants, four showed changes in ethanol absorption. Two mutants, named barfly and tipsy to reflect their reduced and increased ethanol sensitivity in the inebriometer, respectively, were analyzed for locomotor behaviors. Both mutants exhibited ethanol-induced hyperactivity that was indistinguishable from wild type. However, barfly and tipsy displayed reduced and increased sensitivity to the sedative effects of ethanol, respectively. Finally, both mutants showed an increased rate of ethanol-induced turning behavior.

    CONCLUSIONS: The effects of acute ethanol exposure on Drosophila locomotor behaviors are remarkably similar to those described for mammals. The analysis of mutants with altered sensitivity to ethanol revealed that the genetic pathways which regulate these responses are complex and that single genes can affect hyperactivity, turning, and sedation independently.

    View Publication Page
    Chklovskii Lab

    In the primate primary visual area (V1), the ocular dominance pattern consists of alternating monocular stripes. Stripe orientation follows systematic trends preserved across several species. I propose that these trends result from minimizing the length of intra-cortical wiring needed to recombine information from the two eyes in order to achieve the perception of depth. I argue that the stripe orientation at any point of V1 should follow the direction of binocular disparity in the corresponding point of the visual field. The optimal pattern of stripes determined from this argument agrees with the ocular dominance pattern of macaque and Cebus monkeys. This theory predicts that for any point in the visual field the limits of depth perception are greatest in the direction along the ocular dominance stripes at that point.

    View Publication Page
    06/15/00 | Do cockroaches ’know’ about fluid dynamics?
    Rinberg D, Davidowitz H
    Nature. 2000 Jun 15;405(6788):756. doi: 10.1038/35015677
    06/09/00 | Identification of a yeast transcription factor IID subunit, TSG2/TAF48.
    Reese JC, Zhang Z, Kurpad H
    The Journal of Biological Chemistry. 2000 Jun 9;275(23):17391-8. doi: 10.1074/jbc.M001635200

    The RNA polymerase II general transcription factor TFIID is a complex containing the TATA-binding protein (TBP) and associated factors (TAFs). We have used a mutant allele of the gene encoding yeast TAF(II)68/61p to analyze its function in vivo. We provide biochemical and genetic evidence that the C-terminal alpha-helix of TAF(II)68/61p is required for its direct interaction with TBP, the stable incorporation of TBP into the TFIID complex, the integrity of the TFIID complex, and the transcription of most genes in vivo. This is the first evidence that a yeast TAF(II) other than TAF(II)145/130 interacts with TBP, and the implications of this on the interpretation of data obtained studying TAF(II) mutants in vivo are discussed. We have identified a high copy suppressor of the TAF68/61 mutation, TSG2, that has sequence similarity to a region of the SAGA subunit Ada1. We demonstrate that it directly interacts with TAF(II)68/61p in vitro, is a component of TFIID, is required for the stability of the complex in vivo, and is necessary for the transcription of many yeast genes. On the basis of these functions, we propose that Tsg2/TAF(II)48p is the histone 2A-like dimerization partner for the histone 2B-like TAF(II)68/61p in the yeast TFIID complex.

    View Publication Page
    06/01/00 | Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans.
    Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR
    Neuron. 2000 Jun;26(3):583-94

    Electrophysiology and optical indicators have been used in vertebrate systems to investigate excitable cell firing and calcium transients, but both techniques have been difficult to apply in organisms with powerful reverse genetics. To overcome this limitation, we expressed cameleon proteins, genetically encoded calcium indicators, in the pharyngeal muscle of the nematode worm Caenorhabditis elegans. In intact transgenic animals expressing cameleons, fluorescence ratio changes accompanied muscular contraction, verifying detection of calcium transients. By comparing the magnitude and duration of calcium influx in wild-type and mutant animals, we were able to determine the effects of calcium channel proteins on pharyngeal calcium transients. We also successfully used cameleons to detect electrically evoked calcium transients in individual C. elegans neurons. This technique therefore should have broad applications in analyzing the regulation of excitable cell activity in genetically tractable organisms.

    View Publication Page

    We report an extreme morphological difference between Drosophila sechellia and related species of the pattern of hairs on first-instar larvae. On the dorsum of most species, the posterior region of the anterior compartment of most segments is covered by a carpet of fine hairs. In D. sechellia, these hairs have been lost and replaced with naked cuticle. Genetic mapping experiments and interspecific complementation tests indicate that this difference is caused, in its entirety, by evolution at the ovo/shaven-baby locus. The pattern of expression of the ovo/shaven-baby transcript is correlated with this morphological change. The altered dorsal cuticle pattern is probably caused by evolution of the cis-regulatory region of ovo/shaven-baby in the D. sechellia lineage.

    View Publication Page
    04/01/00 | Drosophila genome takes flight.
    Boutros M, Perrimon N
    Nature Cell Biology. 2000 Apr;2(4):E53-4. doi: 10.1038/35008678

    In the March 24 issue of Science, a flurry of papers report on the impending completion of the Drosophila melanogaster genome sequence. This historic achievement is the result of a unique collaboration between the Berkeley Drosophila Genome Project (BDGP), led by Gerry Rubin, and the genomics company Celera, headed by Craig Venter. With its genome almost completely sequenced ahead of schedule, Drosophila is another important model organism to enter the postgenomic age, and represents the largest genome sequenced to date.

    View Publication Page
    Chklovskii Lab
    04/01/00 | Optimal sizes of dendritic and axonal arbors in a topographic projection.
    Chklovskii DB
    Journal of Neurophysiology. 2000;83(4):2113-19

    I consider a topographic projection between two neuronal layers with different densities of neurons. Given the number of output neurons connected to each input neuron (divergence) and the number of input neurons synapsing on each output neuron (convergence), I determine the widths of axonal and dendritic arbors which minimize the total volume of axons and dendrites. Analytical results for one-dimensional and two-dimensional projections can be summarized qualitatively in the following rule: neurons of the sparser layer should have arbors wider than those of the denser layer. This agrees with the anatomic data for retinal, cerebellar, olfactory bulb, and neocortical neurons the morphology and connectivity of which are known. The rule may be used to infer connectivity of neurons from their morphology.

    View Publication Page