Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

1416 Publications

Showing 1271-1280 of 1416 results
Your Criteria:
    06/01/98 | Drosophila EcR-B ecdysone receptor isoforms are required for larval molting and for neuron remodeling during metamorphosis.
    Schubiger M, Wade AA, Carney GE, Truman JW, Bender M
    Development. 1998 Jun;125(11):2053-62

    During the metamorphic reorganization of the insect central nervous system, the steroid hormone 20-hydroxyecdysone induces a wide spectrum of cellular responses including neuronal proliferation, maturation, cell death and the remodeling of larval neurons into their adult forms. In Drosophila, expression of specific ecdysone receptor (EcR) isoforms has been correlated with particular responses, suggesting that different EcR isoforms may govern distinct steroid-induced responses in these cells. We have used imprecise excision of a P element to create EcR deletion mutants that remove the EcR-B promoter and therefore should lack EcR-B1 and EcR-B2 expression but retain EcR-A expression. Most of these EcR-B mutant animals show defects in larval molting, arresting at the boundaries between the three larval stages, while a smaller percentage of EcR-B mutants survive into the early stages of metamorphosis. Remodeling of larval neurons at metamorphosis begins with the pruning back of larval-specific dendrites and occurs as these cells are expressing high levels of EcR-B1 and little EcR-A. This pruning response is blocked in the EcR-B mutants despite the fact that adult-specific neurons, which normally express only EcR-A, can progress in their development. These observations support the hypothesis that different EcR isoforms control cell-type-specific responses during remodeling of the nervous system at metamorphosis.

    View Publication Page
    06/01/98 | Ecdysteroids govern two phases of eye development during metamorphosis of the moth, Manduca sexta.
    Champlin DT, Truman JW
    Development. 1998 Jun;125(11):2009-18

    The eye primordium of the moth, Manduca sexta, shows two different developmental responses to ecdysteroids depending on the concentration to which it is exposed. Tonic exposure to moderate levels of 20-hydroxyecdysone (20E) or its precursor, ecdysone, are required for progression of the morphogenetic furrow across the primordium. Proliferation, cell-type specification and organization of immature ommatidial clusters occur in conjunction with furrow progression. These events can be reversibly started or stopped in cultured primordia simply by adjusting levels of ecdysteroid to be above or below a critical threshold concentration. In contrast, high levels of 20E cause maturation of the photoreceptors and the support cells that comprise the ommatidia. Ommatidial maturation normally occurs after the furrow has crossed the primordium, but premature exposure to high levels of 20E at any time causes precocious maturation. In such cases, the furrow arrests irreversibly and cells behind the furrow produce a well-formed, but miniature, eye. Precocious and catastrophic metamorphosis occurs throughout such animals, suggesting that ecdysteroids control development of other tissues in a manner similar to the eye. The threshold concentrations of 20E required for furrow progression versus ommatidial maturation differ by about 17-fold. This capacity to regulate distinct phases of development by different concentrations of a single hormone is probably achieved by differential sensitivity of target gene promoters to induction by the hormone-bound receptor(s).

    View Publication Page
    05/15/98 | Determinants of voltage attenuation in neocortical pyramidal neuron dendrites.
    Stuart G, Spruston N
    J Neurosci. 1998 May 15;18(10):3501-10

    How effectively synaptic and regenerative potentials propagate within neurons depends critically on the membrane properties and intracellular resistivity of the dendritic tree. These properties therefore are important determinants of neuronal function. Here we use simultaneous whole-cell patch-pipette recordings from the soma and apical dendrite of neocortical layer 5 pyramidal neurons to directly measure voltage attenuation in cortical neurons. When combined with morphologically realistic compartmental models of the same cells, the data suggest that the intracellular resistivity of neocortical pyramidal neurons is relatively low ( approximately 70 to 100 Omegacm), but that voltage attenuation is substantial because of nonuniformly distributed resting conductances present at a higher density in the distal apical dendrites. These conductances, which were largely blocked by bath application of CsCl (5 mM), significantly increased steady-state voltage attenuation and decreased EPSP integral and peak in a manner that depended on the location of the synapse. Together these findings suggest that nonuniformly distributed Cs-sensitive and -insensitive resting conductances generate a "leaky" apical dendrite, which differentially influences the integration of spatially segregated synaptic inputs.

    View Publication Page
    05/15/98 | Mutual regulation of decapentaplegic and hedgehog during the initiation of differentiation in the Drosophila retina.
    Borod ER, Heberlein U
    Devopemental Biology. 1998 May 15;197(2):187-97. doi: 10.1006/dbio.1998.8888

    Neuronal differentiation in the Drosophila retinal primordium, the eye imaginal disc, begins at the posterior tip of the disc and progresses anteriorly as a wave. The morphogenetic furrow (MF) marks the boundary between undifferentiated anterior cells and differentiating posterior cells. Anterior progression of differentiation is driven by Hedgehog, synthesized by cells located posterior to the MF. We report here that hedgehog (hh), which is expressed prior to the start of differentiation along the disc's posterior margin, also plays a crucial role in the initiation of differentiation. Using a temperature-sensitive allele we show that hh is normally required at the posterior margin to maintain the expression of decapentaplegic (dpp) and of the proneural gene atonal. In addition, we find that ectopic differentiation driven by ectopic dpp expression or loss of wingless function requires hh. Consistent with this is our observation that ectopic dpp induces the expression of hh along the anterior margin even in the absence of differentiation. Taken together, these data reveal a novel positive regulatory loop between dpp and hh that is essential for the initiation of differentiation in the eye disc.

    View Publication Page
    04/01/98 | Protein engineering and the development of generic biosensors.
    Hellinga HW, Marvin JS
    Trends in Biotechnology. 1998 Apr;16(4):183-9

    Biosensors exploit the remarkable specificity of biomolecular recognition to provide analytical tools that can measure the presence of a single molecular species in a complex mixture. A new strategy is emerging in the development of biosensor technologies: molecular-engineering techniques are being used to adapt the properties of proteins to simple, generic detector instrumentation, rather than adapting instruments to the unique requirements of a natural molecule.

    View Publication Page
    03/07/98 | Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata.
    Lübke J, Frotscher M, Spruston N
    J Neurophysiol. 1998 Mar;79(3):1518-34

    Because of their strategic position between the granule cell and pyramidal cell layers, neurons of the hilar region of the hippocampal formation are likely to play an important role in the information processing between the entorhinal cortex and the hippocampus proper. Here we present an electrophysiological characterization of anatomically identified neurons in the fascia dentata as studied using patch-pipette recordings and subsequent biocytin-staining of neurons in slices. The resting potential, input resistance (RN), membrane time constant (taum), "sag" in hyperpolarizing responses, maximum firing rate during a 1-s current pulse, spike width, and fast and slow afterhyperpolarizations (AHPs) were determined for several different types of hilar neurons. Basket cells had a dense axonal plexus almost exclusively within the granule cell layer and were distinguishable by their low RN, short taum, lack of sag, and rapid firing rates. Dentate granule cells also lacked sag and were identifiable by their higher RN, longer taum, and lower firing rates than basket cells. Mossy cells had extensive axon collaterals within the hilus and a few long-range collaterals to the inner molecular layer and CA3c and were characterized physiologically by small fast and slow AHPs. Spiny and aspiny hilar interneurons projected primarily either to the inner or outer segment of the molecular layer and had a dense intrahilar axonal plexus, terminating onto somata within the hilus and CA3c. Physiologically, spiny hilar interneurons generally had higher RN values than mossy cells and a smaller slow AHP than aspiny interneurons. The specialized physiological properties of different classes of hilar neurons are likely to be important determinants of their functional operation within the hippocampal circuitry.

    View Publication Page
    03/01/98 | Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice.
    Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA
    Nature Genetics. 1998 Mar;18(3):231-6. doi: 10.1038/ng0398-231

    The regulation of mitochondrial DNA (mtDNA) expression is crucial for mitochondrial biogenesis during development and differentiation. We have disrupted the mouse gene for mitochondrial transcription factor A (Tfam; formerly known as m-mtTFA) by gene targetting of loxP-sites followed by cre-mediated excision in vivo. Heterozygous knockout mice exhibit reduced mtDNA copy number and respiratory chain deficiency in heart. Homozygous knockout embryos exhibit a severe mtDNA depletion with abolished oxidative phosphorylation. Mutant embryos proceed through implantation and gastrulation, but die prior to embryonic day (E)10.5. Thus, Tfam is the first mammalian protein demonstrated to regulate mtDNA copy number in vivo and is essential for mitochondrial biogenesis and embryonic development.

    View Publication Page
    02/01/98 | Dorsoventral patterning in the Drosophila retina by wingless.
    Heberlein U, Borod ER, Chanut FA
    Development. 1998 Feb;125(4):567-77

    The eye imaginal disc displays dorsal-ventral (D-V) and anterior-posterior polarity prior to the onset of differentiation, which initiates at the intersection of the D-V midline with the posterior margin. As the wave of differentiation progresses anteriorly, additional asymmetry develops as ommatidial clusters rotate coordinately in opposite directions in the dorsal and ventral halves of the disc; this forms a line of mirror-image symmetry, the equator, which coincides with the D-V midline of the disc. How D-V pattern is established and how it relates to ommatidial rotation are unknown. Here we address this question by assaying the expression of various asymmetric markers under conditions that lead to ectopic differentiation, such as removal of patched or wingless function. We find that D-V patterning develops gradually and that wingless plays an important role in setting up this pattern. We show that wingless is necessary and sufficient to induce dorsal expression of the gene mirror prior to the start of differentiation and also to restrict the expression of the WR122 marker to differentiating photoreceptors near the equator. In addition, we find that manipulations in wingless expression shift the D-V axis of the disc as evidenced by changes in the expression domains of asymmetric markers, the position of the site of initiation and the equator, and the pattern of epithelial growth. Thus, Wg appears to coordinately regulate multiple events related to D-V patterning in the developing retina.

    View Publication Page
    02/01/98 | Phylogeny of the Tribe Cerataphidini (Homoptera) and the Evolution of the Horned Soldier Aphids
    David L Stern
    Evolution. 02/1998;52:155-165

    The horned soldier aphids of the Cerataphidini, unlike most social insects that reside in nests, live on the open surface of plants. The lack of a nest and other obvious ecological correlates makes it unclear why secondary-host soldiers might have evolved. Here I present a molecular phylogenetic analysis of 32 species of the Cerataphidini, including 10 species from the genera Ceratovacuna and Pseudoregma that produce horned soldiers. The phylogeny suggests that horned soldiers evolved once and were lost once or twice. Most horned soldiers are a morphologically specialized caste and two species that have unspecialized soldiers are independently derived from species with specialized castes. The genus Ceratovacuna appears to have undergone a relatively rapid radiation. Mapping secondary-host plants and geographic ranges onto the phylogeny suggests that bamboos were the ancestral secondary-host plants and that the Asian tropics and subtropics were the ancestral geographic regions for the genera Astegopteryx, Ceratoglyphina, Ceratovacuna Chaitoregma, and Pseudoregma and possibly for the entire tribe. There is evidence for vicariant events that separate the tropical and subtropical lineages in all of the major lineages of the tribe and for dispersal of some lineages. Based on these results, I present hypotheses for the causes and consequences of horned-soldier evolution.

    View Publication Page
    01/01/98 | Eye development in Drosophila: formation of the eye field and control of differentiation.
    Treisman JE, Heberlein U
    Current Topics in Developmental Biology. 1998;39:119-58