Filter
Associated Lab
- Aguilera Castrejon Lab (14) Apply Aguilera Castrejon Lab filter
- Ahrens Lab (11) Apply Ahrens Lab filter
- Baker Lab (19) Apply Baker Lab filter
- Betzig Lab (12) Apply Betzig Lab filter
- Beyene Lab (5) Apply Beyene Lab filter
- Bock Lab (3) Apply Bock Lab filter
- Branson Lab (3) Apply Branson Lab filter
- Card Lab (6) Apply Card Lab filter
- Cardona Lab (19) Apply Cardona Lab filter
- Chklovskii Lab (3) Apply Chklovskii Lab filter
- Clapham Lab (1) Apply Clapham Lab filter
- Darshan Lab (4) Apply Darshan Lab filter
- Dennis Lab (1) Apply Dennis Lab filter
- Dickson Lab (14) Apply Dickson Lab filter
- Druckmann Lab (4) Apply Druckmann Lab filter
- Dudman Lab (12) Apply Dudman Lab filter
- Egnor Lab (7) Apply Egnor Lab filter
- Espinosa Medina Lab (4) Apply Espinosa Medina Lab filter
- Fetter Lab (10) Apply Fetter Lab filter
- Fitzgerald Lab (13) Apply Fitzgerald Lab filter
- Gonen Lab (32) Apply Gonen Lab filter
- Grigorieff Lab (28) Apply Grigorieff Lab filter
- Harris Lab (10) Apply Harris Lab filter
- Heberlein Lab (81) Apply Heberlein Lab filter
- Hermundstad Lab (4) Apply Hermundstad Lab filter
- Hess Lab (3) Apply Hess Lab filter
- Jayaraman Lab (4) Apply Jayaraman Lab filter
- Johnson Lab (5) Apply Johnson Lab filter
- Kainmueller Lab (19) Apply Kainmueller Lab filter
- Karpova Lab (1) Apply Karpova Lab filter
- Keleman Lab (5) Apply Keleman Lab filter
- Keller Lab (15) Apply Keller Lab filter
- Koay Lab (16) Apply Koay Lab filter
- Lavis Lab (12) Apply Lavis Lab filter
- Lee (Albert) Lab (5) Apply Lee (Albert) Lab filter
- Leonardo Lab (4) Apply Leonardo Lab filter
- Li Lab (24) Apply Li Lab filter
- Lippincott-Schwartz Lab (72) Apply Lippincott-Schwartz Lab filter
- Liu (Yin) Lab (5) Apply Liu (Yin) Lab filter
- Liu (Zhe) Lab (5) Apply Liu (Zhe) Lab filter
- Looger Lab (1) Apply Looger Lab filter
- Magee Lab (18) Apply Magee Lab filter
- Menon Lab (6) Apply Menon Lab filter
- Murphy Lab (7) Apply Murphy Lab filter
- O'Shea Lab (1) Apply O'Shea Lab filter
- Pachitariu Lab (12) Apply Pachitariu Lab filter
- Pastalkova Lab (13) Apply Pastalkova Lab filter
- Pavlopoulos Lab (12) Apply Pavlopoulos Lab filter
- Pedram Lab (11) Apply Pedram Lab filter
- Reiser Lab (6) Apply Reiser Lab filter
- Riddiford Lab (24) Apply Riddiford Lab filter
- Romani Lab (12) Apply Romani Lab filter
- Rubin Lab (38) Apply Rubin Lab filter
- Saalfeld Lab (17) Apply Saalfeld Lab filter
- Satou Lab (15) Apply Satou Lab filter
- Schreiter Lab (17) Apply Schreiter Lab filter
- Sgro Lab (20) Apply Sgro Lab filter
- Simpson Lab (5) Apply Simpson Lab filter
- Singer Lab (43) Apply Singer Lab filter
- Spruston Lab (36) Apply Spruston Lab filter
- Stern Lab (83) Apply Stern Lab filter
- Sternson Lab (7) Apply Sternson Lab filter
- Stringer Lab (3) Apply Stringer Lab filter
- Svoboda Lab (4) Apply Svoboda Lab filter
- Tebo Lab (24) Apply Tebo Lab filter
- Tillberg Lab (3) Apply Tillberg Lab filter
- Tjian Lab (47) Apply Tjian Lab filter
- Truman Lab (30) Apply Truman Lab filter
- Turaga Lab (12) Apply Turaga Lab filter
- Turner Lab (11) Apply Turner Lab filter
- Wang (Shaohe) Lab (19) Apply Wang (Shaohe) Lab filter
- Wu Lab (1) Apply Wu Lab filter
- Zlatic Lab (2) Apply Zlatic Lab filter
- Zuker Lab (20) Apply Zuker Lab filter
Associated Project Team
Publication Date
- 2023 (1) Apply 2023 filter
- 2022 (25) Apply 2022 filter
- 2021 (18) Apply 2021 filter
- 2020 (18) Apply 2020 filter
- 2019 (22) Apply 2019 filter
- 2018 (26) Apply 2018 filter
- 2017 (28) Apply 2017 filter
- 2016 (18) Apply 2016 filter
- 2015 (55) Apply 2015 filter
- 2014 (46) Apply 2014 filter
- 2013 (58) Apply 2013 filter
- 2012 (77) Apply 2012 filter
- 2011 (92) Apply 2011 filter
- 2010 (100) Apply 2010 filter
- 2009 (102) Apply 2009 filter
- 2008 (100) Apply 2008 filter
- 2007 (85) Apply 2007 filter
- 2006 (89) Apply 2006 filter
- 2005 (67) Apply 2005 filter
- 2004 (57) Apply 2004 filter
- 2003 (58) Apply 2003 filter
- 2002 (39) Apply 2002 filter
- 2001 (28) Apply 2001 filter
- 2000 (29) Apply 2000 filter
- 1999 (14) Apply 1999 filter
- 1998 (18) Apply 1998 filter
- 1997 (16) Apply 1997 filter
- 1996 (10) Apply 1996 filter
- 1995 (18) Apply 1995 filter
- 1994 (12) Apply 1994 filter
- 1993 (10) Apply 1993 filter
- 1992 (6) Apply 1992 filter
- 1991 (11) Apply 1991 filter
- 1990 (11) Apply 1990 filter
- 1989 (6) Apply 1989 filter
- 1988 (1) Apply 1988 filter
- 1987 (7) Apply 1987 filter
- 1986 (4) Apply 1986 filter
- 1985 (5) Apply 1985 filter
- 1984 (2) Apply 1984 filter
- 1983 (2) Apply 1983 filter
- 1982 (3) Apply 1982 filter
- 1981 (3) Apply 1981 filter
- 1980 (1) Apply 1980 filter
- 1979 (1) Apply 1979 filter
- 1976 (2) Apply 1976 filter
- 1973 (1) Apply 1973 filter
- 1970 (1) Apply 1970 filter
- 1967 (1) Apply 1967 filter
Type of Publication
- Remove Non-Janelia filter Non-Janelia
1404 Publications
Showing 1271-1280 of 1404 resultsSoldier-producing aphids have evolved at least nine separate times. The larvae of soldier-producing species can be organized into three general categories: monomorphic larvae, dimorphic larvae with a reproductive soldier caste, and dimorphic larvae with a sterile soldier caste. Here we report the discovery of a novel soldier type in an undescribed species of Pseudoregma that is morphologically similar to P. bambucicola. A colony of this species produced morphologically monomorphic first-instar larvae with a defensive behavioral dimorphism. These larvae attacked natural predators, and larval response to a simple assay, placing the tips of forceps in front of larvae, was correlated with this attacking behavior. Approximately one third of the first-instar larvae in the colony attacked and this proportion was uncorrelated with the time of day, the ambient temperature, or the diel migratory behavior of the aphids. Migrating larvae rarely attacked. Attacking behavior was correlated with another defensive behavior, hind-leg waving. Attackers were more likely to possess the next-instar skin, suggesting that they were older than non-attackers. This is the first example of a possible within-instar age polyethism in soldier-producing aphids. Canonical variates analysis of seven morphological measurements failed to discriminate between attacking and non-attacking larvae. The monomorphic larvae share some morphometric characteristics in common with the soldiers of P. bambucicola and other characteristics in common with normal larvae. We discuss these results with respect to the evolution and loss of soldier castes in the tribe Cerataphidini.
The neuropeptide eclosion hormone (EH) is a key regulator of insect ecdysis. We tested the role of the two EH-producing neurons in Drosophila by using an EH cell-specific enhancer to activate cell death genes reaper and head involution defective to ablate the EH cells. In the EH cell knockout flies, larval and adult ecdyses were disrupted, yet a third of the knockouts emerged as adults, demonstrating that EH has a significant but nonessential role in ecdysis. The EH cell knockouts had discrete behavioral deficits, including slow, uncoordinated eclosion and an insensitivity to ecdysis-triggering hormone. The knockouts lacked the lights-on eclosion response despite having a normal circadian eclosion rhythm. This study represents a novel approach to the dissection of neuropeptide regulation of a complex behavioral program.
The anatomical and electrophysiological properties of neurons in the stratum lucidum of the CA3 subfield of the hippocampus were examined by using patch-pipette recordings combined with biocytin staining. This method facilitated the analysis of the morphological features and passive and active properties of a recently described class of spiny neurons in the stratum lucidum, as well as aspiny neurons in this region. Some, but not all, synaptic inputs of both types of neurons were found to arise from the mossy fiber system. The axons of spiny neurons in the stratum lucidum were heavily collateralized, terminating primarily in the stratum lucidum and stratum radiatum of CA3, and to a lesser extent in the stratum pyramidale and stratum oriens. Only a few axonal projections were found that extended beyond the CA3 region into CA1 and the hilus. Aspiny neurons fell into two classes: those projecting axons to the stratum lucidum and stratum radiatum of CA3 and those with axon terminations mainly in the stratum pyramidale and stratum oriens. The electrophysiological properties of spiny and aspiny neurons in the stratum lucidum were similar, but on average, the aspiny neurons had significantly higher maximal firing rates and narrower action potential half-widths. The results demonstrate that a diverse population of neurons exists in the region of mossy fiber termination in area CA3. These neurons may be involved in local-circuit feedback, or feed-forward systems controlling the flow of information through the hippocampus.
During low-frequency firing, action potentials actively invade the dendrites of CA1 pyramidal neurons. At higher firing rates, however, activity-dependent processes result in the attenuation of back-propagating action potentials, and propagation failures occur at some dendritic branch points. We tested two major hypotheses related to this activity-dependent attenuation of back-propagating action potentials: (1) that it is mediated by a prolonged form of sodium channel inactivation and (2) that it is mediated by a persistent dendritic shunt activated by back-propagating action potentials. We found no evidence for a persistent shunt, but we did find that cumulative, prolonged inactivation of sodium channels develops during repetitive action potential firing. This inactivation is significant after a single action potential and continues to develop during several action potentials thereafter, until a steady-state sodium current is established. Recovery from this form of inactivation is much slower than its induction, but recovery can be accelerated by hyperpolarization. The similarity of these properties to the time and voltage dependence of attenuation and recovery of dendritic action potentials suggests that dendritic sodium channel inactivation contributes to the activity dependence of action potential back-propagation in CA1 neurons. Hence, the biophysical properties of dendritic sodium channels will be important determinants of action potential-mediated effects on synaptic integration and plasticity in hippocampal neurons.
In Drosophila, pattern formation at multiple stages of embryonic and imaginal development depends on the same intercellular signaling pathways. We have identified a novel gene, eyelid (eld), which is required for embryonic segmentation, development of the notum and wing margin, and photoreceptor differentiation. In these tissues, eld mutations have effects opposite to those caused by wingless (wg) mutations. eld encodes a widely expressed nuclear protein with a region homologous to a novel family of DNA-binding domains. Based on this homology and on the phenotypic analysis, we suggest that Eld could act as a transcription factor antagonistic to the Wg pathway.
In insects, the shedding of the old cuticle at the end of a molt involves a stereotyped sequence of distinct behaviors. Our studies on the isolated nervous system of Manduca sexta show that the peptides ecdysis-triggering hormone (ETH) and crustacean cardioactive peptide (CCAP) elicit the first two motor behaviors, the pre-ecdysis and ecdysis behaviors, respectively. Exposing isolated abdominal ganglia to ETH resulted in the generation of sustained pre-ecdysis bursts. By contrast, exposing the entire isolated CNS to ETH resulted in the sequential appearance of pre-ecdysis and ecdysis motor outputs. Previous research has shown that ETH activates neurons within the brain that then release eclosion hormone within the CNS. The latter elevates cGMP levels within and increases the excitability of a group of neurons containing CCAP. In our experiments, the ETH-induced onset of ecdysis bursts was always associated with a rise in intracellular cGMP within these CCAP neurons. We also found that CCAP immunoreactivity decreases centrally during normal ecdysis. Isolated, desheathed abdominal ganglia responded to CCAP by generating rhythmical ecdysis bursts. These ecdysis motor bursts persisted as long as CCAP was present and could be reinduced by successive application of the peptide. CCAP exposure also actively terminated pre-ecdysis bursts from the abdominal CNS, even in the continued presence of ETH. Thus, the sequential performance of the two behaviors arises from one modulator activating the first behavior and also initiating the release of the second modulator. The second modulator then turns off the first behavior while activating the second.
In Drosophila, dosage compensation occurs by increasing the transcription of the single male X chromosome. Four trans-acting factors encoded by the male-specific lethal genes are required for this process. Dosage compensation is restricted to males by the splicing regulator Sex-lethal, which functions to prevent the production of the MSL-2 protein in females by an unknown mechanism. In this report, we provide evidence that Sex-lethal acts synergistically through sequences in both the 5' and 3' untranslated regions of MSL-2 to mediate repression. We also provide evidence that the repression of MSL-2 is directly regulated by Sex-lethal at the level of translation.
We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3’ end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer’s activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers.
Rational protein design is an emerging approach for testing general theories of structure and function. The ability to manipulate function rationally also offers the possibility of creating new proteins of biotechnological value. Here we use the design approach to test the current understanding of the structural principles of allosteric interactions in proteins and demonstrate how a simple allosteric system can form the basis for the construction of a generic biosensor molecular engineering system. We have identified regions in Escherichia coli maltose-binding protein that are predicted to be allosterically linked to its maltose-binding site. Environmentally sensitive fluorophores were covalently attached to unique thiols introduced by cysteine mutations at specific sites within these regions. The fluorescence of such conjugates changes cooperatively with respect to maltose binding, as predicted. Spatial separation of the binding site and reporter groups allows the intrinsic properties of each to be manipulated independently. Provided allosteric linkage is maintained, ligand binding can therefore be altered without affecting transduction of the binding event by fluorescence. To demonstrate applicability to biosensor technology, we have introduced a series of point mutations in the maltose-binding site that lower the affinity of the protein for its ligand. These mutant proteins have been combined in a composite biosensor capable of measuring substrate concentration within 5% accuracy over a concentration range spanning five orders of magnitude.