Main Menu (Mobile)- Block
- Overview
-
Support Teams
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
- Open Science
- You + Janelia
- About Us
Main Menu - Block
- Overview
- Anatomy and Histology
- Cryo-Electron Microscopy
- Electron Microscopy
- Flow Cytometry
- Gene Targeting and Transgenics
- Immortalized Cell Line Culture
- Integrative Imaging
- Invertebrate Shared Resource
- Janelia Experimental Technology
- Mass Spectrometry
- Media Prep
- Molecular Genomics
- Primary & iPS Cell Culture
- Project Pipeline Support
- Project Technical Resources
- Quantitative Genomics
- Scientific Computing Software
- Scientific Computing Systems
- Viral Tools
- Vivarium
Note: Research in this publication was not performed at Janelia.
Abstract
How effectively synaptic and regenerative potentials propagate within neurons depends critically on the membrane properties and intracellular resistivity of the dendritic tree. These properties therefore are important determinants of neuronal function. Here we use simultaneous whole-cell patch-pipette recordings from the soma and apical dendrite of neocortical layer 5 pyramidal neurons to directly measure voltage attenuation in cortical neurons. When combined with morphologically realistic compartmental models of the same cells, the data suggest that the intracellular resistivity of neocortical pyramidal neurons is relatively low ( approximately 70 to 100 Omegacm), but that voltage attenuation is substantial because of nonuniformly distributed resting conductances present at a higher density in the distal apical dendrites. These conductances, which were largely blocked by bath application of CsCl (5 mM), significantly increased steady-state voltage attenuation and decreased EPSP integral and peak in a manner that depended on the location of the synapse. Together these findings suggest that nonuniformly distributed Cs-sensitive and -insensitive resting conductances generate a "leaky" apical dendrite, which differentially influences the integration of spatially segregated synaptic inputs.