Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

1358 Publications

Showing 1351-1358 of 1358 results
Your Criteria:
    09/01/81 | Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method.
    Bingham PM, Levis R, Rubin GM
    Cell. 1981 Sep;25(3):693-704. doi: 10.1186/gb-2007-8-7-r145

    We describe the isolation of a cloned DNA segment carrying unique sequences from the white locus of Drosophila melanogaster. Sequences within the cloned segment are shown to hybridize in situ to the white locus region on the polytene chromosomes of both wild-type strains and strains carrying chromosomal rearrangements whose breakpoints bracket the white locus. We further show that two small deficiency mutations, deleting white locus genetic elements but not those of complementation groups contiguous to white, delete the genomic sequences corresponding to a portion of the cloned segment. The strategy we have employed to isolate this cloned segment exploits the existence of an allele at the white locus containing a copy of a previously cloned transposable, reiterated DNA sequence element. We describe a simple, rapid method for retrieving cloned segments carrying a copy of the transposable element together with contiguous sequences corresponding to this allele. The strategy described is potentially general and we discuss its application to the cloning of the DNA sequences of other genes in Drosophila, including those identified only by genetic analysis and for which no RNA product is known.

    View Publication Page
    Baker Lab
    02/01/80 | On the action of major loci affecting sex determination in Drosophila melanogaster.
    Baker B, Ridge K
    Genetics. 1980 Feb;94(2):383-423

    Sex determination in Drosophila melanogaster is under the control of the X chromosome:autosome ratio and at least four major regulatory genes: transformer (tra), transformer-2 (tra-2), doublesex (dsx) and intersex (ix). Attention is focused here on the roles of these four loci in sex determination. By examining the sexual phenotype of clones of homozygous mutant cells produced by mitotic recombination in flies heterozygous for a given recessive sex-determination mutant, we have shown that the tra, tra-2 and dsx loci determine sex in a cell-autonomous manner. The effect of removing the wild-type allele of each locus (by mitotic recombination) at a number of times during development has been used to determine when the wild-type alleles of the tra, tra-2 and dsx loci have been transcribed sufficiently to support normal sexual development. The wild-type alleles of all three loci are needed into the early pupal period for normal sex determination in the cells that produce the sexually dimorphic (in pigmentation) cuticle of the fifth and sixth dorsal abdominal segments. tra(+) and tra-2(+) cease being needed shortly before the termination of cell division in the abdomen, whereas dsx(+) is required at least until the end of division. By contrast, in the foreleg, the wild-type alleles of tra(+) and tra-2(+) have functioned sufficiently for normal sexual differentiation to occur by about 24 to 48 hours before pupariation, but dsx(+) is required in the foreleg at least until pupariation.--A comparison of the phenotypes produced in mutant/deficiency and homozygous mutant-bearing flies shows that dsx, tra-2 and tra mutants result in a loss of wild-type function and probably represent null alleles at these genes.-All possible homozygous doublemutant combinations of ix, tra-2 and dsx have been constructed and reveal a clear pattern of epistasis: dsx > tra, tra-2 > ix. We conclude that these genes function in a single pathway that determines sex. The data suggest that these mutants are major regulatory loci that control the batteries of genes necessary for the development of many, and perhaps all, secondary sexual characteristics.-The striking similarities between the properties of these loci and those of the homeotic loci that determine segmental and subsegmental specialization during development suggest that the basic mechanisms of regulation are the same in the two situations. The phenotypes and interactions of these sex-determination mutants provide the basis for the model of how the wild-type alleles of these loci act together to effect normal sex determination. Implications of these observations for the function of other homeotic loci are discussed.

    View Publication Page
    06/01/79 | Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila.
    Potter SS, Brorein WJ, Dunsmuir P, Rubin GM
    Cell. 1979 Jun;17:415-27. doi: 10.1186/gb-2007-8-7-r145

    The stability of elements of three different dispersed repeated gene families in the genome of Drosophila tissue culture cells has been examined. Different amounts of sequences homologous to elements of 412, copia and 297 dispersed repeated gene families are found in the genomes of D. melanogaster embryonic and tissue culture cells. In general the amount of these sequences is increased in the cell lines. The additional sequences homologous to 412, copia and 297 occur as intact elements and are dispersed to new sites in the cell culture genome. It appears that these elements can insert at many alternative sites. We also describe a DNA sequence arrangement found in the D. melanogaster embryo genome which appears to result from a transposition of an element of the copia dispersed repeated gene family into a new chromosomal site. The mechanism of insertion of this copia element is precise to within 90 bp and may involve a region of weak sequence homology between the site of insertion and the direct terminal repeats of the copia element.

    View Publication Page
    04/30/76 | Dendritic reorganization of an identified motoneuron during metamorphosis of the tobacco hornworm moth.
    Truman JW, Reiss SE
    Science. 1976 Apr 30;192(4238):477-9

    In the tobacco hornworm, many larval motoneurons become respecified and supply new muscles in the adult. Changes in the morphology of one such neuron were examined through metamorphosis. The dendritic pattern of the adult comes about both by outgrowth from the primary and secondary branches of the larval neuron and by the development of new branches that are unique to the adult.

    View Publication Page
    Riddiford Lab
    01/15/76 | Hormonal control of insect epidermal cell commitment in vitro.
    Riddiford LM
    Nature. 1976 Jan 15;259(5539):115-7
    06/10/73 | The nucleotide sequence of Saccharomyces cerevisiae 5.8 S ribosomal ribonucleic acid.
    Rubin GM
    The Journal of Biological Chemistry. 1973 Jun 10;248:3860-75. doi: 10.1186/gb-2007-8-7-r145
    Truman LabRiddiford Lab
    03/20/70 | Neuroendocrine control of ecdysis in silkmoths.
    Truman JW, Riddiford LM
    Science. 1970 Mar 20;167(3925):1624-6. doi: 10.1126/science.167.3925.1624

    An adult moth sheds its pupal skin only during a specific period of the day. The brain is necessary for the synchronization of this behavior with the environmental photoperiod. This function is fully preserved when all the brain’s nervous connections are severed or when a "loose" brain is transplanted into the tip of the abdomen. By appropriate experiments it was possible to show that the entire mechanism is brain-centered. The components include a photoreceptor mechanism, a clock, and a neuroendocrine output. The clock-controlled release of the hormone acts on the central nervous system to trigger a species-specific behavior pattern which culminates in ecdysis.

    View Publication Page
    11/18/67 | Circular dimer and catenate forms of mitochondrial DNA in human leukaemic leucocytes.
    Clayton DA, Vinograd J
    Nature. 1967 Nov 18;216(5116):652-7. doi: 10.1101/gad.1352105