Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

33 Publications

Showing 1-10 of 33 results
Your Criteria:
    01/24/23 | Hierarchical architecture of dopaminergic circuits enables second-order conditioning in Drosophila
    Daichi Yamada , Daniel Bushey , Li Feng , Karen Hibbard , Megan Sammons , Jan Funke , Ashok Litwin-Kumar , Toshihide Hige , Yoshinori Aso
    eLife. 2023 Jan 24:. doi: 10.7554/eLife.79042

    Dopaminergic neurons with distinct projection patterns and physiological properties compose memory subsystems in a brain. However, it is poorly understood whether or how they interact during complex learning. Here, we identify a feedforward circuit formed between dopamine subsystems and show that it is essential for second-order conditioning, an ethologically important form of higher-order associative learning. The Drosophila mushroom body comprises a series of dopaminergic compartments, each of which exhibits distinct memory dynamics. We find that a slow and stable memory compartment can serve as an effective “teacher” by instructing other faster and transient memory compartments via a single key interneuron, which we identify by connectome analysis and neurotransmitter prediction. This excitatory interneuron acquires enhanced response to reward-predicting odor after first-order conditioning and, upon activation, evokes dopamine release in the “student” compartments. These hierarchical connections between dopamine subsystems explain distinct properties of first- and second-order memory long known by behavioral psychologists.

    View Publication Page
    12/15/22 | Eye structure shapes neuron function in Drosophila motion vision
    Arthur Zhao , Eyal Gruntman , Aljoscha Nern , Nirmala A. Iyer , Edward M. Rogers , Sanna Koskela , Igor Siwanowicz , Marisa Dreher , Miriam A. Flynn , Connor W. Laughland , Henrique D.F. Ludwig , Alex G. Thomson , Cullen P. Moran , Bruck Gezahegn , Davi D. Bock , Michael B. Reiser
    bioRxiv. 2022 Dec 15:. doi: 10.1101/2022.12.14.520178

    Many animals rely on vision to navigate through their environment. The pattern of changes in the visual scene induced by self-motion is the optic flow1, which is first estimated in local patches by directionally selective (DS) neurons24. But how should the arrays of DS neurons, each responsive to motion in a preferred direction at a specific retinal position, be organized to support robust decoding of optic flow by downstream circuits? Understanding this global organization is challenging because it requires mapping fine, local features of neurons across the animal’s field of view3. In Drosophila, the asymmetric dendrites of the T4 and T5 DS neurons establish their preferred direction, making it possible to predict DS responses from anatomy4,5. Here we report that the preferred directions of fly DS neurons vary at different retinal positions and show that this spatial variation is established by the anatomy of the compound eye. To estimate the preferred directions across the visual field, we reconstructed hundreds of T4 neurons in a full brain EM volume6 and discovered unexpectedly stereotypical dendritic arborizations that are independent of location. We then used whole-head μCT scans to map the viewing directions of all compound eye facets and found a non-uniform sampling of visual space that explains the spatial variation in preferred directions. Our findings show that the organization of preferred directions in the fly is largely determined by the compound eye, exposing an intimate and unexpected connection between the peripheral structure of the eye, functional properties of neurons deep in the brain, and the control of body movements.

    View Publication Page
    12/15/22 | Neural circuit mechanisms for transforming learned olfactory valences into wind-oriented movement
    Yoshinori Aso , Daichi Yamada , Daniel Bushey , Karen Hibbard , Megan Sammons , Hideo Otsuna , Yichun Shuai , Toshihide Hige
    bioRxiv. 2022 Dec 15:. doi: 10.1101/2022.12.21.521497

    How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After training, disinhibition from the appetitive-memory MBONs enhances the response of UpWiNs to reward-predicting odors. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was initiated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.

    View Publication Page
    12/15/22 | Neural coding of distinct motor patterns during Drosophila courtship song
    Hiroshi M. Shiozaki , Kaiyu Wang , Joshua L. Lillvis , Min Xu , Barry J. Dickson , David L. Stern
    bioRxiv. 2022 Dec 15:. doi: 10.1101/2022.12.14.520499

    Animals flexibly switch between different actions by changing neural activity patterns for motor control. Courting Drosophila melanogaster males produce two different acoustic signals, pulse and sine song, each of which can be promoted by artificial activation of distinct neurons. However, how the activity of these neurons implements flexible song production is unknown. Here, we developed an assay to record neuronal calcium signals in the ventral nerve cord, which contains the song motor circuit, in singing flies. We found that sine-promoting neurons, but not pulse-promoting neurons, show strong activation during sine song. In contrast, both pulse- and sine-promoting neurons are active during pulse song. Furthermore, population calcium imaging in the song circuit suggests that sine song involves activation of a subset of neurons that are also active during pulse song. Thus, differential activation of overlapping, rather than distinct, neural populations underlies flexible motor actions during acoustic communication in D. melanogaster.

    View Publication Page
    10/26/22 | Rapid reconstruction of neural circuits using tissue expansion and lattice light sheet microscopy
    Joshua L. Lillvis , Hideo Otsuna , Xiaoyu Ding , Igor Pisarev , Takashi Kawase , Jennifer Colonell , Konrad Rokicki , Cristian Goina , Ruixuan Gao , Amy Hu , Kaiyu Wang , John Bogovic , Daniel E. Milkie , Edward S. Boyden , Stephan Saalfeld , Paul W. Tillberg , Barry J. Dickson
    eLife. 2022 Oct 26:. doi: 10.7554/eLife.81248

    Electron microscopy (EM) allows for the reconstruction of dense neuronal connectomes but suffers from low throughput, limiting its application to small numbers of reference specimens. We developed a protocol and analysis pipeline using tissue expansion and lattice light-sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many samples with single synapse resolution and molecular contrast. We validate this approach in Drosophila, demonstrating that it yields synaptic counts similar to those obtained by EM, can be used to compare counts across sex and experience, and to correlate structural connectivity with functional connectivity. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.

    View Publication Page
    07/21/22 | NeuronBridge: an intuitive web application for neuronal morphology search across large data sets
    Jody Clements , Cristian Goina , Philip M. Hubbard , Takashi Kawase , Donald J. Olbris , Hideo Otsuna , Robert Svirskas , Konrad Rokicki
    bioRxiv. 2022 Jul 21:. doi: 10.1101/2022.07.20.500311

    Neuroscience research in Drosophila is benefiting from large-scale connectomics efforts using electron microscopy (EM) to reveal all the neurons in a brain and their connections. In order to exploit this knowledge base, researchers target individual neurons and study their function. Therefore, vast libraries of fly driver lines expressing fluorescent reporter genes in sets of neurons have been created and imaged using confocal light microscopy (LM). However, creating a fly line for driving gene expression within a single neuron found in the EM connectome remains a challenge, as it typically requires identifying a pair of fly lines where only the neuron of interest is expressed in both. This task and other emerging scientific workflows require finding similar neurons across large data sets imaged using different modalities. Here, we present NeuronBridge, a web application for easily and rapidly finding putative morphological matches between large datasets of neurons imaged using different modalities. We describe the functionality and construction of the NeuronBridge service, including its user-friendly GUI, data model, serverless cloud architecture, and massively parallel image search engine. NeuronBridge is openly accessible at http://neuronbridge.janelia.org/.

    View Publication Page
    03/14/22 | A population of descending neurons that regulates the flight motor of Drosophila.
    Namiki S, Ros IG, Morrow C, Rowell WJ, Card GM, Korff W, Dickinson MH
    Current Biology. 2022 Mar 14;32(5):1189-1196. doi: 10.1016/j.cub.2022.01.008

    Similar to many insect species, Drosophila melanogaster is capable of maintaining a stable flight trajectory for periods lasting up to several hours. Because aerodynamic torque is roughly proportional to the fifth power of wing length, even small asymmetries in wing size require the maintenance of subtle bilateral differences in flapping motion to maintain a stable path. Flies can even fly straight after losing half of a wing, a feat they accomplish via very large, sustained kinematic changes to both the damaged and intact wings. Thus, the neural network responsible for stable flight must be capable of sustaining fine-scaled control over wing motion across a large dynamic range. In this study, we describe an unusual type of descending neuron (DNg02) that projects directly from visual output regions of the brain to the dorsal flight neuropil of the ventral nerve cord. Unlike many descending neurons, which exist as single bilateral pairs with unique morphology, there is a population of at least 15 DNg02 cell pairs with nearly identical shape. By optogenetically activating different numbers of DNg02 cells, we demonstrate that these neurons regulate wingbeat amplitude over a wide dynamic range via a population code. Using two-photon functional imaging, we show that DNg02 cells are responsive to visual motion during flight in a manner that would make them well suited to continuously regulate bilateral changes in wing kinematics. Collectively, we have identified a critical set of descending neurons that provides the sensitivity and dynamic range required for flight control.

    View Publication Page
    12/16/21 | Synaptic targets of photoreceptors specialized to detect color and skylight polarization in .
    Kind E, Longden KD, Nern A, Zhao A, Sancer G, Flynn MA, Laughland CW, Gezahegn B, Ludwig HD, Thomson AG, Obrusnik T, Alarcón PG, Dionne H, Bock DD, Rubin GM, Reiser MB, Wernet MF
    eLife. 2021 Dec 16;10:. doi: 10.7554/eLife.71858

    Color and polarization provide complementary information about the world and are detected by specialized photoreceptors. However, the downstream neural circuits that process these distinct modalities are incompletely understood in any animal. Using electron microscopy, we have systematically reconstructed the synaptic targets of the photoreceptors specialized to detect color and skylight polarization in Drosophila, and we have used light microscopy to confirm many of our findings. We identified known and novel downstream targets that are selective for different wavelengths or polarized light, and followed their projections to other areas in the optic lobes and the central brain. Our results revealed many synapses along the photoreceptor axons between brain regions, new pathways in the optic lobes, and spatially segregated projections to central brain regions. Strikingly, photoreceptors in the polarization-sensitive dorsal rim area target fewer cell types, and lack strong connections to the lobula, a neuropil involved in color processing. Our reconstruction identifies shared wiring and modality-specific specializations for color and polarization vision, and provides a comprehensive view of the first steps of the pathways processing color and polarized light inputs.

    View Publication Page
    12/14/20 | The connectome of the adult mushroom body provides insights into function.
    Li F, Lindsey JW, Marin EC, Otto N, Dreher M, Dempsey G, Stark I, Bates AS, Pleijzier MW, Schlegel P, Nern A, Takemura S, Eckstein N, Yang T, Francis A, Braun A, Parekh R, Costa M, Scheffer LK, Aso Y, Jefferis GS, Abbott LF, Litwin-Kumar A, Waddell S, Rubin GM
    eLife. 2020 Dec 14;9:. doi: 10.7554/eLife.62576

    Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory and activity regulation. Here we identify new components of the MB circuit in , including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.

    View Publication Page
    11/10/21 | Circuits for integrating learned and innate valences in the insect brain.
    Eschbach C, Fushiki A, Winding M, Afonso B, Andrade IV, Cocanougher BT, Eichler K, Gepner R, Si G, Valdes-Aleman J, Fetter RD, Gershow M, Jefferis GS, Samuel AD, Truman JW, Cardona A, Zlatic M
    eLife. 2021 Nov 10;10:. doi: 10.7554/eLife.62567

    Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all Mushroom Body output neurons (encoding learned valences) and characterized their patterns of interaction with Lateral Horn neurons (encoding innate valences) in larva. The connectome revealed multiple types that receive convergent Mushroom Body and Lateral Horn inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.

    View Publication Page