Filter
Associated Lab
- 43418 (1) Apply 43418 filter
- Ahrens Lab (1) Apply Ahrens Lab filter
- Betzig Lab (7) Apply Betzig Lab filter
- Clapham Lab (2) Apply Clapham Lab filter
- Dudman Lab (2) Apply Dudman Lab filter
- Harris Lab (3) Apply Harris Lab filter
- Hess Lab (2) Apply Hess Lab filter
- Ji Lab (1) Apply Ji Lab filter
- Keller Lab (2) Apply Keller Lab filter
- Koyama Lab (4) Apply Koyama Lab filter
- Lavis Lab (113) Apply Lavis Lab filter
- Lippincott-Schwartz Lab (4) Apply Lippincott-Schwartz Lab filter
- Liu Lab (13) Apply Liu Lab filter
- Looger Lab (8) Apply Looger Lab filter
- Podgorski Lab (2) Apply Podgorski Lab filter
- Schreiter Lab (4) Apply Schreiter Lab filter
- Singer Lab (5) Apply Singer Lab filter
- Stern Lab (2) Apply Stern Lab filter
- Sternson Lab (1) Apply Sternson Lab filter
- Svoboda Lab (2) Apply Svoboda Lab filter
- Tjian Lab (5) Apply Tjian Lab filter
- Turner Lab (1) Apply Turner Lab filter
Associated Project Team
Publication Date
- 2022 (9) Apply 2022 filter
- 2021 (11) Apply 2021 filter
- 2020 (9) Apply 2020 filter
- 2019 (6) Apply 2019 filter
- 2018 (12) Apply 2018 filter
- 2017 (16) Apply 2017 filter
- 2016 (13) Apply 2016 filter
- 2015 (5) Apply 2015 filter
- 2014 (7) Apply 2014 filter
- 2013 (4) Apply 2013 filter
- 2012 (4) Apply 2012 filter
- 2011 (5) Apply 2011 filter
- 2010 (1) Apply 2010 filter
- 2009 (2) Apply 2009 filter
- 2008 (4) Apply 2008 filter
- 2007 (3) Apply 2007 filter
- 2006 (2) Apply 2006 filter
Type of Publication
113 Publications
Showing 101-110 of 113 resultsPhenolic fluorophores such as fluorescein, Tokyo Green, resorufin, and their derivatives are workhorses of biological science. Acylating the phenolic hydroxyl group(s) in these fluorophores masks their fluorescence. The ensuing ester is a substrate for cellular esterases, which can restore fluorescence. These esters are, however, notoriously unstable to hydrolysis, severely compromising their utility. The acetoxymethyl (AM) group is an esterase-sensitive motif that can mask polar functionalities in small molecules. Here, we report on the use of AM ether groups to mask phenolic fluorophores. The resulting profluorophores have a desirable combination of low background fluorescence, high chemical stability, and high enzymatic reactivity, both in vitro and in cellulo. These simple phenyl ether-based profluorophores could supplement or supplant the use of phenyl esters for imaging biochemical and biological systems.
Bovine pancreatic ribonuclease (RNase A) can enter human cells, even though it lacks a cognate cell-surface receptor protein. Here, we report on the biochemical basis for its cellular uptake. Analyses in vitro and in cellulo revealed that RNase A interacts tightly with abundant cell-surface proteoglycans containing glycosaminoglycans, such as heparan sulfate and chondroitin sulfate, as well as with sialic acid-containing glycoproteins. The uptake of RNase A correlates with cell anionicity, as quantified by measuring electrophoretic mobility. The cellular binding and uptake of RNase A contrast with those of Onconase, an amphibian homologue that does not interact tightly with anionic cell-surface glycans. As anionic glycans are especially abundant on human tumor cells, our data predicate utility for mammalian ribonucleases as cancer chemotherapeutic agents.
Haloalkane dehalogenase (HD) catalyzes the hydrolysis of haloalkanes via a covalent enzyme-substrate intermediate. Fusing a target protein to an HD variant that cannot hydrolyze the intermediate enables labeling of the target protein with a haloalkane in cellulo. The utility of extant probes is hampered, however, by background fluorescence as well as limited membrane permeability. Here, we report on the synthesis and use of a fluorogenic affinity label that, after unmasking by an intracellular esterase, labels an HD variant in cellulo. Labeling is rapid and specific, as expected from the reliance upon enzymic catalysts and the high membrane permeance of the probe both before and after unmasking. Most notably, even high concentrations of the fluorogenic affinity label cause minimal background fluorescence without a need to wash the cells. We envision that such fluorogenic affinity labels, which enlist catalysis by two cellular enzymes, will find utility in pulse-chase experiments, high-content screening, and numerous other protocols.
Onconase (ONC) is a member of the ribonuclease A superfamily that is toxic to cancer cells in vitro and in vivo. ONC is now in Phase IIIb clinical trials for the treatment of malignant mesothelioma. Internalization of ONC to the cytosol of cancer cells is essential for its cytotoxic activity, despite the apparent absence of a cell-surface receptor protein. Endocytosis and cytotoxicity do, however, appear to correlate with the net positive charge of ribonucleases. To dissect the contribution made by the endogenous arginine and lysine residues of ONC to its cytotoxicity, 22 variants were created in which cationic residues were replaced with alanine. Variants with the same net charge (+2 to +5) as well as equivalent catalytic activity and conformational stability were found to exhibit large (> 10-fold) differences in toxicity for the cells of a human leukemia line. In addition, a more cationic ONC variant could be either much more or much less cytotoxic than a less cationic variant, again depending on the distribution of its cationic residues. The endocytosis of variants with widely divergent cytotoxic activity was quantified by flow cytometry using a small-molecule fluorogenic label, and was found to vary by twofold or less. This small difference in endocytosis did not account for the large difference in cytotoxicity, implicating the distribution of cationic residues as being critical for lipid-bilayer translocation subsequent to endocytosis. This finding has fundamental implications for understanding the interaction of ribonucleases and other proteins with mammalian cells.
A derivative of rhodamine 110 has been designed and assessed as a probe for cytochrome P450 activity. This probe is the first to utilize a ’trimethyl lock’ that is triggered by cleavage of an ether bond. In vitro, fluorescence was manifested by the CYP1A1 isozyme with k(cat)/K(M)=8.8x10(3)M(-1)s(-1) and K(M)=0.09microM. In cellulo, the probe revealed the induction of cytochrome P450 activity by the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, and its repression by the chemoprotectant resveratrol.
A recent study challenges the oft-held notion that ester bonds in prodrug molecules are cleaved rapidly and completely inside cells by endogenous, nonspecific esterases. Structure-activity relationship studies on acylated sugars reveal that regioisomeric compounds display disparate biological activity, suggesting that ester bonds can persist in a cellular context.
Small-molecule fluorescent probes embody an essential facet of chemical biology. Although numerous compounds are known, the ensemble of fluorescent probes is based on a modest collection of modular "core" dyes. The elaboration of these dyes with diverse chemical moieties is enabling the precise interrogation of biochemical and biological systems. The importance of fluorescence-based technologies in chemical biology elicits a necessity to understand the major classes of small-molecule fluorophores. Here, we examine the chemical and photophysical properties of oft-used fluorophores and highlight classic and contemporary examples in which utility has been built upon these scaffolds.
p-Nitrophenyl acetate is the most commonly used substrate for detecting the catalytic activity of esterases, including those that activate prodrugs in human cells. This substrate is unstable in aqueous solution, limiting its utility. Here, a stable chromogenic substrate for esterases is produced by the structural isolation of an acetyl ester and p-nitroaniline group using a trimethyl lock moiety. Upon ester hydrolysis, unfavorable steric interactions between the three methyl groups of this o-hydroxycinnamic acid derivative encourage rapid lactonization to form a hydrocoumarin and release p-nitroaniline. This "prochromophore" could find use in a variety of assays.
The evolutionary rate of proteins involved in obligate protein-protein interactions is slower and the degree of coevolution higher than that for nonobligate protein-protein interactions. The coevolution of the proteins involved in certain nonobligate interactions is, however, essential to cell survival. To gain insight into the coevolution of one such nonobligate protein pair, the cytosolic ribonuclease inhibitor (RI) proteins and secretory pancreatic-type ribonucleases from cow (Bos taurus) and human (Homo sapiens) were produced in Escherichia coli and purified, and their physicochemical properties were analyzed. The two intraspecies complexes were found to be extremely tight (bovine Kd = 0.69 fM; human Kd = 0.34 fM). Human RI binds to its cognate ribonuclease (RNase 1) with 100-fold greater affinity than to the bovine homologue (RNase A). In contrast, bovine RI binds to RNase 1 and RNase A with nearly equal affinity. This broader specificity is consistent with there being more pancreatic-type ribonucleases in cows (20) than humans (13). Human RI (32 cysteine residues) also has 4-fold less resistance to oxidation by hydrogen peroxide than does bovine RI (29 cysteine residues). This decreased oxidative stability of human RI, which is caused largely by Cys74, implies a larger role for human RI as an antioxidant. The conformational and oxidative stabilities of both RIs increase upon complex formation with ribonucleases. Thus, RI has evolved to maintain its inhibition of invading ribonucleases, even when confronted with extreme environmental stress. That role appears to take precedence over its role in mediating oxidative damage.
Cells tightly regulate their contents. Still, nonspecific Coulombic interactions between cationic molecules and anionic membrane components can lead to adventitious endocytosis. Here, we characterize this process in a natural system. To do so, we create variants of human pancreatic ribonuclease (RNase 1) that differ in net molecular charge. By conjugating a small-molecule latent fluorophore to these variants and using flow cytometry, we are able to determine the kinetic mechanism for RNase 1 internalization into live human cells. We find that internalization increases with solution concentration and is not saturable. Internalization also increases with time to a steady-state level, which varies linearly with molecular charge. In contrast, the rate constant for internalization (t1/2 = 2 h) is independent of charge. We conclude that internalization involves an extracellular equilibrium complex between the cationic proteins and abundant anionic cell-surface molecules, followed by rate-limiting internalization. The enhanced internalization of more cationic variants of RNase 1 is, however, countered by their increased affinity for the cytosolic ribonuclease inhibitor protein, which is anionic. Thus, Coulombic forces mediate extracellular and intracellular equilibria in a dichotomous manner that both endangers cells and defends them from the potentially lethal enzymatic activity of ribonucleases.