Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

29 Publications

Showing 1-10 of 29 results
Your Criteria:
    Zuker Lab
    10/05/00 | A molecular pathway for light-dependent photoreceptor apoptosis in Drosophila.
    Kiselev A, Socolich M, Vinós J, Hardy RW, Zuker CS, Ranganathan R
    Neuron. 2000 Oct 5;28(1):139-52

    Light-induced photoreceptor apoptosis occurs in many forms of inherited retinal degeneration resulting in blindness in both vertebrates and invertebrates. Though mutations in several photoreceptor signaling proteins have been implicated in triggering this process, the molecular events relating light activation of rhodopsin to photoreceptor death are yet unclear. Here, we uncover a pathway by which activation of rhodopsin in Drosophila mediates apoptosis through a G protein-independent mechanism. This process involves the formation of membrane complexes of phosphorylated, activated rhodopsin and its inhibitory protein arrestin, and subsequent clathrin-dependent endocytosis of these complexes into a cytoplasmic compartment. Together, these data define the proapoptotic molecules in Drosophila photoreceptors and indicate a novel signaling pathway for light-activated rhodopsin molecules in control of photoreceptor viability.

    View Publication Page
    Zuker Lab
    03/17/00 | A novel family of mammalian taste receptors.
    Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS
    Cell. 2000 Mar 17;100:693-702

    In mammals, taste perception is a major mode of sensory input. We have identified a novel family of 40-80 human and rodent G protein-coupled receptors expressed in subsets of taste receptor cells of the tongue and palate epithelia. These candidate taste receptors (T2Rs) are organized in the genome in clusters and are genetically linked to loci that influence bitter perception in mice and humans. Notably, a single taste receptor cell expresses a large repertoire of T2Rs, suggesting that each cell may be capable of recognizing multiple tastants. T2Rs are exclusively expressed in taste receptor cells that contain the G protein alpha subunit gustducin, implying that they function as gustducin-linked receptors. In the accompanying paper, we demonstrate that T2Rs couple to gustducin in vitro, and respond to bitter tastants in a functional expression assay.

    View Publication Page

    ro(Dom) is a dominant allele of rough (ro) that results in reduced eye size due to premature arrest in morphogenetic furrow (MF) progression. We found that the ro(Dom) stop-furrow phenotype was sensitive to the dosage of genes known to affect retinal differentiation, in particular members of the hedgehog (hh) signaling cascade. We demonstrate that ro(Dom) interferes with Hh's ability to induce the retina-specific proneural gene atonal (ato) in the MF and that normal eye size can be restored by providing excess Ato protein. We used ro(Dom) as a sensitive genetic background in which to identify mutations that affect hh signal transduction or regulation of ato expression. In addition to mutations in several unknown loci, we recovered multiple alleles of groucho (gro) and Hairless (H). Analysis of their phenotypes in somatic clones suggests that both normally act to restrict neuronal cell fate in the retina, although they control different aspects of ato's complex expression pattern.

    View Publication Page
    03/24/00 | A whole-genome assembly of Drosophila.
    Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, Anson EL, Bolanos RA, Chou HH, Jordan CM, Halpern AL, Lonardi S, Beasley EM, Brandon RC, Chen L, Dunn PJ, Lai Z, Liang Y, Nusskern DR, Zhan M, Zhang Q, Zheng X, Rubin GM, Adams MD, Venter JC
    Science. 2000 Mar 24;287(5461):2196-204

    We report on the quality of a whole-genome assembly of Drosophila melanogaster and the nature of the computer algorithms that accomplished it. Three independent external data sources essentially agree with and support the assembly’s sequence and ordering of contigs across the euchromatic portion of the genome. In addition, there are isolated contigs that we believe represent nonrepetitive pockets within the heterochromatin of the centromeres. Comparison with a previously sequenced 2.9- megabase region indicates that sequencing accuracy within nonrepetitive segments is greater than 99. 99% without manual curation. As such, this initial reconstruction of the Drosophila sequence should be of substantial value to the scientific community.

    View Publication Page
    Chklovskii Lab
    01/01/00 | A wire length minimization approach to ocular dominance patterns in mammalian visual cortex.
    Chklovskii DB, Koulakov AA
    Physica A. 2000;284:318-34
    Chklovskii Lab

    In the primate primary visual area (V1), the ocular dominance pattern consists of alternating monocular stripes. Stripe orientation follows systematic trends preserved across several species. I propose that these trends result from minimizing the length of intra-cortical wiring needed to recombine information from the two eyes in order to achieve the perception of depth. I argue that the stripe orientation at any point of V1 should follow the direction of binocular disparity in the corresponding point of the visual field. The optimal pattern of stripes determined from this argument agrees with the ocular dominance pattern of macaque and Cebus monkeys. This theory predicts that for any point in the visual field the limits of depth perception are greatest in the direction along the ocular dominance stripes at that point.

    View Publication Page
    03/24/00 | Comparative genomics of the eukaryotes.
    Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashburner M, Birney E, Boguski MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Goldstein LS, Gong F, Guan P, Harris NL, Hay BA, Hoskins RA, Li J, Li Z, Hynes RO, Jones SJ, Kuehl PM, Lemaitre B, Littleton JT, Morrison DK, Mungall C, O’Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang J, Zhao Q, Zheng XH, Lewis S
    Science. 2000 Mar 24;287(5461):2204-15. doi: 10.1186/gb-2007-8-7-r145

    A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.

    View Publication Page

    We report an extreme morphological difference between Drosophila sechellia and related species of the pattern of hairs on first-instar larvae. On the dorsum of most species, the posterior region of the anterior compartment of most segments is covered by a carpet of fine hairs. In D. sechellia, these hairs have been lost and replaced with naked cuticle. Genetic mapping experiments and interspecific complementation tests indicate that this difference is caused, in its entirety, by evolution at the ovo/shaven-baby locus. The pattern of expression of the ovo/shaven-baby transcript is correlated with this morphological change. The altered dorsal cuticle pattern is probably caused by evolution of the cis-regulatory region of ovo/shaven-baby in the D. sechellia lineage.

    View Publication Page
    10/27/00 | Diversity and dynamics of dendritic signaling.
    Häusser M, Spruston N, Stuart GJ
    Science. 2000 Oct 27;290(5492):739-44

    Communication between neurons in the brain occurs primarily through synapses made onto elaborate treelike structures called dendrites. New electrical and optical recording techniques have led to tremendous advances in our understanding of how dendrites contribute to neuronal computation in the mammalian brain. The varied morphology and electrical and chemical properties of dendrites enable a spectrum of local and long-range signaling, defining the input-output relationship of neurons and the rules for induction of synaptic plasticity. In this way, diversity in dendritic signaling allows individual neurons to carry out specialized functions within their respective networks.

    View Publication Page
    06/15/00 | Do cockroaches ’know’ about fluid dynamics?
    Rinberg D, Davidowitz H
    Nature. 2000 Jun 15;405(6788):756. doi: 10.1038/35015677