Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

161 Publications

Showing 41-50 of 161 results
Your Criteria:
    08/05/10 | Continuous attractors with morphed/correlated maps.
    Romani S, Tsodyks M
    PLoS Computational Biology. 2010 Aug 5;6(8):e1000869. doi: 10.1371/journal.pcbi.1000869

    Continuous attractor networks are used to model the storage and representation of analog quantities, such as position of a visual stimulus. The storage of multiple continuous attractors in the same network has previously been studied in the context of self-position coding. Several uncorrelated maps of environments are stored in the synaptic connections, and a position in a given environment is represented by a localized pattern of neural activity in the corresponding map, driven by a spatially tuned input. Here we analyze networks storing a pair of correlated maps, or a morph sequence between two uncorrelated maps. We find a novel state in which the network activity is simultaneously localized in both maps. In this state, a fixed cue presented to the network does not determine uniquely the location of the bump, i.e. the response is unreliable, with neurons not always responding when their preferred input is present. When the tuned input varies smoothly in time, the neuronal responses become reliable and selective for the environment: the subset of neurons responsive to a moving input in one map changes almost completely in the other map. This form of remapping is a non-trivial transformation between the tuned input to the network and the resulting tuning curves of the neurons. The new state of the network could be related to the formation of direction selectivity in one-dimensional environments and hippocampal remapping. The applicability of the model is not confined to self-position representations; we show an instance of the network solving a simple delayed discrimination task.

    View Publication Page
    02/01/10 | Convolutional networks can learn to generate affinity graphs for image segmentation.
    Turaga SC, Murray JF, Jain V, Roth F, Helmstaedter M, Briggman K, Denk W, Seung HS
    Neural Computation. 2010 Feb;22(2):511-38. doi: 10.1162/neco.2009.10-08-881

    Many image segmentation algorithms first generate an affinity graph and then partition it. We present a machine learning approach to computing an affinity graph using a convolutional network (CN) trained using ground truth provided by human experts. The CN affinity graph can be paired with any standard partitioning algorithm and improves segmentation accuracy significantly compared to standard hand-designed affinity functions. We apply our algorithm to the challenging 3D segmentation problem of reconstructing neuronal processes from volumetric electron microscopy (EM) and show that we are able to learn a good affinity graph directly from the raw EM images. Further, we show that our affinity graph improves the segmentation accuracy of both simple and sophisticated graph partitioning algorithms. In contrast to previous work, we do not rely on prior knowledge in the form of hand-designed image features or image preprocessing. Thus, we expect our algorithm to generalize effectively to arbitrary image types.

    View Publication Page
    Gonen Lab
    05/17/10 | Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B.
    Tien JF, Umbreit NT, Gestaut DR, Franck AD, Cooper J, Wordeman L, Gonen T, Asbury CL, Davis TN
    The Journal of Cell Biology. 2010 May 17;189(4):713-23. doi: 10.1083/jcb.200910142

    The coupling of kinetochores to dynamic spindle microtubules is crucial for chromosome positioning and segregation, error correction, and cell cycle progression. How these fundamental attachments are made and persist under tensile forces from the spindle remain important questions. As microtubule-binding elements, the budding yeast Ndc80 and Dam1 kinetochore complexes are essential and not redundant, but their distinct contributions are unknown. In this study, we show that the Dam1 complex is a processivity factor for the Ndc80 complex, enhancing the ability of the Ndc80 complex to form load-bearing attachments to and track with dynamic microtubule tips in vitro. Moreover, the interaction between the Ndc80 and Dam1 complexes is abolished when the Dam1 complex is phosphorylated by the yeast aurora B kinase Ipl1. This provides evidence for a mechanism by which aurora B resets aberrant kinetochore-microtubule attachments. We propose that the action of the Dam1 complex as a processivity factor in kinetochore-microtubule attachment is regulated by conserved signals for error correction.

    View Publication Page
    12/22/10 | Cortical representations of olfactory input by trans-synaptic tracing.
    Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, Taniguchi H, Tasic B, Huang ZJ, He Z, Callaway EM, Horowitz MA, Luo L
    Nature. 2010 Dec 22;472(7342):191-6. doi: 10.1038/nature09714

    In the mouse, each class of olfactory receptor neurons expressing a given odorant receptor has convergent axonal projections to two specific glomeruli in the olfactory bulb, thereby creating an odour map. However, it is unclear how this map is represented in the olfactory cortex. Here we combine rabies-virus-dependent retrograde mono-trans-synaptic labelling with genetics to control the location, number and type of ’starter’ cortical neurons, from which we trace their presynaptic neurons. We find that individual cortical neurons receive input from multiple mitral cells representing broadly distributed glomeruli. Different cortical areas represent the olfactory bulb input differently. For example, the cortical amygdala preferentially receives dorsal olfactory bulb input, whereas the piriform cortex samples the whole olfactory bulb without obvious bias. These differences probably reflect different functions of these cortical areas in mediating innate odour preference or associative memory. The trans-synaptic labelling method described here should be widely applicable to mapping connections throughout the mouse nervous system.

    View Publication Page
    06/07/10 | Delivery of picosecond lasers in multimode fibers for coherent anti-Stokes Raman scattering imaging.
    Wang Z, Yang Y, Luo P, Gao L, Wong KK, Wong ST
    Optics Express. 2010 Jun 7;18(12):13017-28. doi: 10.1364/AO.50.001792

    We investigated the possibility of using standard commercial multimode fibers (MMF), Corning SMF28 fibers, to deliver picosecond excitation lasers for coherent anti-Stokes Raman scattering (CARS) imaging. We theoretically and/or experimentally analyzed issues associated with the fiber delivery, such as dispersion length, walk-off length, nonlinear length, average threshold power for self-phase modulations, and four-wave mixing (FWM). These analyses can also be applied to other types of fibers. We found that FWM signals are generated in MMF, but they can be filtered out using a long-pass filter for CARS imaging. Finally, we demonstrated that MMF can be used for delivery of picosecond excitation lasers in the CARS imaging system without any degradation of image quality.

    View Publication Page
    04/15/10 | Dermal morphogenesis controls lateral line patterning during postembryonic development of teleost fish
    Hironori Wada , Alain Ghysen , Chie Satou , Shin-ichi Higashijima , Koichi Kawakami , Satoshi Hamaguchi , Mitsuru Sakaizumi
    Developmental Biology. 04/2010;340:583-594. doi: https://doi.org/10.1016/j.ydbio.2010.02.017

    The lateral line system displays highly divergent patterns in adult teleost fish. The mechanisms underlying this variability are poorly understood. Here, we demonstrate that the lateral line mechanoreceptor, the neuromast, gives rise to a series of accessory neuromasts by a serial budding process during postembryonic development in zebrafish. We also show that accessory neuromast formation is highly correlated to the development of underlying dermal structures such as bones and scales. Abnormalities in opercular bone morphogenesis, in endothelin 1-knockdown embryos, are accompanied by stereotypic errors in neuromast budding and positioning, further demonstrating the tight correlation between the patterning of neuromasts and of the underlying dermal bones. In medaka, where scales form between peridermis and opercular bones, the lateral line displays a scale-specific pattern which is never observed in zebrafish. These results strongly suggest a control of postembryonic neuromast patterns by underlying dermal structures. This dermal control may explain some aspects of the evolution of lateral line patterns.

    View Publication Page
    12/01/10 | Determining membrane protein topologies in single cells and high-throughput screening applications.
    Wunder C, Lippincott-Schwartz J, Lorenz H
    Current protocols in cell biology / editorial board, Juan S. Bonifacino ... [et al.]. 2010 Dec;Chapter 5:Unit 5.7. doi: 10.1002/0471143030.cb0507s49

    Correct localization and topology are crucial for a protein's cellular function. To determine topologies of membrane proteins, a new technique, called fluorescence protease protection (FPP) assay, has recently been established. The sole requirements for FPP are the expression of fluorescent-protein fusion proteins and the selective permeabilization of the plasma membrane, permitting a wide range of cell types and organelles to be investigated. Proteins topologies in organelles like endoplasmic reticulum, Golgi apparatus, mitochondria, peroxisomes, and autophagosomes have already been determined by FPP. Here, two different step-by-step protocols of the FPP assay are provided. First, we describe the FPP assay using fluorescence microscopy for single adherent cells, and second, we outline the FPP assay for high-throughput screening applications.

    View Publication Page
    08/01/10 | Development-based compartmentalization of the Drosophila central brain.
    Pereanu W, Kumar A, Jennett A, Reichert H, Hartenstein V
    J Comp Neurol. 2010 Aug 01;518(15):2996-3023. doi: 10.1002/cne.22376

    The neuropile of the Drosophila brain is subdivided into anatomically discrete compartments. Compartments are rich in terminal neurite branching and synapses; they are the neuropile domains in which signal processing takes place. Compartment boundaries are defined by more or less dense layers of glial cells as well as long neurite fascicles. These fascicles are formed during the larval period, when the approximately 100 neuronal lineages that constitute the Drosophila central brain differentiate. Each lineage forms an axon tract with a characteristic trajectory in the neuropile; groups of spatially related tracts congregate into the brain fascicles that can be followed from the larva throughout metamorphosis into the adult stage. Here we provide a map of the adult brain compartments and the relevant fascicles defining compartmental boundaries. We have identified the neuronal lineages contributing to each fascicle, which allowed us to compare compartments of the larval and adult brain directly. Most adult compartments can be recognized already in the early larval brain, where they form a "protomap" of the later adult compartments. Our analysis highlights the morphogenetic changes shaping the Drosophila brain; the data will be important for studies that link early-acting genetic mechanisms to the adult neuronal structures and circuits controlled by these mechanisms.

    View Publication Page
    Riddiford Lab
    10/01/10 | Developmental expression of mRNAs for epidermal and fat body proteins and hormonally regulated transcription factors in the tobacco hornworm, Manduca sexta.
    Hiruma K, Riddiford LM
    Journal of Insect Physiology. 2010 Oct;56(10):1390-5. doi: 10.1016/j.jinsphys.2010.03.029

    This paper provides a compilation of diagrammatic representations of the expression profiles of epidermal and fat body mRNAs during the last two larval instars and metamorphosis of the tobacco hornworm, Manduca sexta. Included are those encoding insecticyanin, three larval cuticular proteins, dopa decarboxylase, moling, and the juvenile hormone-binding protein JP29 produced by the dorsal abdominal epidermis, and arylphorin and the methionine-rich storage proteins made by the fat body. The mRNA profiles of the ecdysteroid-regulated cascade of transcription factors in the epidermis during the larval molt and the onset of metamorphosis and in the pupal wing during the onset of adult development are also shown. These profiles are accompanied by a brief summary of the current knowledge about the regulation of these mRNAs by ecdysteroids and juvenile hormone based on experimental manipulations, both in vivo and in vitro.

    View Publication Page
    01/01/10 | Direct detection of benzene, toluene, and ethylbenzene at trace levels in ambient air by atmospheric pressure chemical ionization using a handheld mass spectrometer.
    Huang G, Gao L, Duncan J, Harper JD, Sanders NL, Ouyang Z, Cooks RG
    Journal of the American Society for Mass Spectrometry. 2010 Jan;21(1):132-5. doi: 10.1364/AO.50.001792

    The capabilities of a portable mass spectrometer for real-time monitoring of trace levels of benzene, toluene, and ethylbenzene in air are illustrated. An atmospheric pressure interface was built to implement atmospheric pressure chemical ionization for direct analysis of gas-phase samples on a previously described miniature mass spectrometer (Gao et al. Anal. Chem.2006, 78, 5994-6002). Linear dynamic ranges, limits of detection and other analytical figures of merit were evaluated: for benzene, a limit of detection of 0.2 parts-per-billion was achieved for air samples without any sample preconcentration. The corresponding limits of detection for toluene and ethylbenzene were 0.5 parts-per-billion and 0.7 parts-per-billion, respectively. These detection limits are well below the compounds’ permissible exposure levels, even in the presence of added complex mixtures of organics at levels exceeding the parts-per-million level. The linear dynamic ranges of benzene, toluene, and ethylbenzene are limited to approximately two orders of magnitude by saturation of the detection electronics.

    View Publication Page