Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block

Type of Publication

general_search_page-panel_pane_1 | views_panes

28 Publications

Showing 11-20 of 28 results
Your Criteria:
    Grigorieff Lab
    08/08/12 | Maturation in action: CryoEM study of a viral capsid caught during expansion.
    Veesler D, Quispe J, Grigorieff N, Potter CS, Carragher B, Johnson JE
    Structure. 2012 Aug 8;20(8):1384-90. doi: 10.1016/j.str.2012.05.011

    Bacteriophage HK97 maturation involves discrete intermediate particle forms, comparable to transitional states in protein folding, before reaching its mature form. The process starts by formation of a metastable prohead, poised for exothermic expansion triggered by DNA packaging. During maturation, the capsid subunit transitions from a strained to a canonical tertiary conformation and this has been postulated to be the driving mechanism for initiating expansion via switching hexameric capsomer architecture from skewed to 6-fold symmetric. We report the subnanometer electron-cryomicroscopy reconstruction of the HK97 first expansion intermediate before any crosslink formation. This form displays 6-fold symmetric hexamers, but capsid subunit tertiary structures exhibit distortions comparable to the prohead forms. We propose that coat subunit strain release acts in synergy with the first crosslinks to drive forward maturation. Finally, we speculate that the energetic features of this transition may result from increased stability of intermediates during maturation via enhanced inter-subunit interactions.

    View Publication Page
    Grigorieff Lab
    06/30/09 | Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM.
    Chen JZ, Settembre EC, Aoki ST, Zhang X, Bellamy AR, Dormitzer PR, Harrison SC, Grigorieff N
    Proceedings of the National Academy of Sciences of the United States of America. 2009 Jun 30;106(26):10644-8. doi: 10.1073/pnas.0904024106

    Rotaviruses, major causes of childhood gastroenteritis, are nonenveloped, icosahedral particles with double-strand RNA genomes. By the use of electron cryomicroscopy and single-particle reconstruction, we have visualized a rotavirus particle comprising the inner capsid coated with the trimeric outer-layer protein, VP7, at a resolution (4 A) comparable with that of X-ray crystallography. We have traced the VP7 polypeptide chain, including parts not seen in its X-ray crystal structure. The 3 well-ordered, 30-residue, N-terminal "arms" of each VP7 trimer grip the underlying trimer of VP6, an inner-capsid protein. Structural differences between free and particle-bound VP7 and between free and VP7-coated inner capsids may regulate mRNA transcription and release. The Ca(2+)-stabilized VP7 intratrimer contact region, which presents important neutralizing epitopes, is unaltered upon capsid binding.

    View Publication Page
    Grigorieff Lab
    11/07/12 | Movies of ice-embedded particles enhance resolution in electron cryo-microscopy.
    Campbell MG, Cheng A, Brilot AF, Moeller A, Lyumkis D, Veesler D, Pan J, Harrison SC, Potter CS, Carragher B, Grigorieff N
    Structure. 2012 Nov 7;20(11):1823-8. doi: 10.1016/j.str.2012.08.026

    Low-dose images obtained by electron cryo-microscopy (cryo-EM) are often affected by blurring caused by sample motion during electron beam exposure, degrading signal especially at high resolution. We show here that we can align frames of movies, recorded with a direct electron detector during beam exposure of rotavirus double-layered particles, thereby greatly reducing image blurring caused by beam-induced motion and sample stage instabilities. This procedure increases the efficiency of cryo-EM imaging and enhances the resolution obtained in three-dimensional reconstructions of the particle. Using movies in this way is generally applicable to all cryo-EM samples and should also improve the performance of midrange electron microscopes that may have limited mechanical stability and beam coherence.

    View Publication Page
    Grigorieff Lab
    02/08/10 | Nanoscale flexibility parameters of Alzheimer amyloid fibrils determined by electron cryo-microscopy.
    Sachse C, Grigorieff N, Fändrich M
    Angewandte Chemie (International ed. in English). 2010 Feb 8;49(7):1321-3. doi: 10.1002/anie.200904781

    Versatile nanomaterial: Unusually high nanoscale flexibility was displayed by amyloid fibils in electron microscopy studies (see picture). This finding is relevant for understanding amyloid pathogenicity and for potential biotechnological applications.

    View Publication Page
    Grigorieff Lab
    04/01/11 | Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy.
    Grigorieff N, Harrison SC
    Current Opinion in Structural Biology. 2011 Apr;21(2):265-73. doi: 10.1016/j.sbi.2011.01.008

    Nine different near-atomic resolution structures of icosahedral viruses, determined by electron cryo-microscopy and published between early 2008 and late 2010, fulfil predictions made 15 years ago that single-particle cryo-EM techniques could visualize molecular detail at 3-4A resolution. This review summarizes technical developments, both in instrumentation and in computation, that have led to the new structures, which advance our understanding of virus assembly and cell entry.

    View Publication Page
    Grigorieff Lab
    02/28/12 | Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface.
    Deaconescu AM, Sevostyanova A, Artsimovitch I, Grigorieff N
    Proceedings of the National Academy of Sciences of the United States of America. 2012 Feb 28;109:3353-8. doi: 10.1073/pnas.1115105109

    Transcription-coupled DNA repair targets DNA lesions that block progression of elongating RNA polymerases. In bacteria, the transcription-repair coupling factor (TRCF; also known as Mfd) SF2 ATPase recognizes RNA polymerase stalled at a site of DNA damage, removes the enzyme from the DNA, and recruits the Uvr(A)BC nucleotide excision repair machinery via UvrA binding. Previous studies of TRCF revealed a molecular architecture incompatible with UvrA binding, leaving its recruitment mechanism unclear. Here, we examine the UvrA recognition determinants of TRCF using X-ray crystallography of a core TRCF-UvrA complex and probe the conformational flexibility of TRCF in the absence and presence of nucleotides using small-angle X-ray scattering. We demonstrate that the C-terminal domain of TRCF is inhibitory for UvrA binding, but not RNA polymerase release, and show that nucleotide binding induces concerted multidomain motions. Our studies suggest that autoinhibition of UvrA binding in TRCF may be relieved only upon engaging the DNA damage.

    View Publication Page
    Grigorieff Lab
    10/01/12 | Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter.
    Sindelar CV, Grigorieff N
    Journal of Structural Biology. 2012 Oct;180:26-38. doi: 10.1016/j.jsb.2012.05.005

    The high noise level found in single-particle electron cryo-microscopy (cryo-EM) image data presents a special challenge for three-dimensional (3D) reconstruction of the imaged molecules. The spectral signal-to-noise ratio (SSNR) and related Fourier shell correlation (FSC) functions are commonly used to assess and mitigate the noise-generated error in the reconstruction. Calculation of the SSNR and FSC usually includes the noise in the solvent region surrounding the particle and therefore does not accurately reflect the signal in the particle density itself. Here we show that the SSNR in a reconstructed 3D particle map is linearly proportional to the fractional volume occupied by the particle. Using this relationship, we devise a novel filter (the "single-particle Wiener filter") to minimize the error in a reconstructed particle map, if the particle volume is known. Moreover, we show how to approximate this filter even when the volume of the particle is not known, by optimizing the signal within a representative interior region of the particle. We show that the new filter improves on previously proposed error-reduction schemes, including the conventional Wiener filter as well as figure-of-merit weighting, and quantify the relationship between all of these methods by theoretical analysis as well as numeric evaluation of both simulated and experimentally collected data. The single-particle Wiener filter is applicable across a broad range of existing 3D reconstruction techniques, but is particularly well suited to the Fourier inversion method, leading to an efficient and accurate implementation.

    View Publication Page
    Grigorieff Lab
    02/08/12 | Outcome of the first electron microscopy validation task force meeting.
    Henderson R, Sali A, Baker ML, Carragher B, Devkota B, Downing KH, Egelman EH, Feng Z, Frank J, Grigorieff N, Jiang W, Ludtke SJ, Medalia O, Penczek PA, Rosenthal PB, Rossmann MG, Schmid MF, Schröder GF, Steven AC, Stokes DL, Westbrook JD, Wriggers W, Yang H, Young J, Berman HM, Chiu W, Kleywegt GJ, Lawson CL
    Structure. 2012 Feb 8;20(2):205-14. doi: 10.1016/j.str.2011.12.014

    This Meeting Review describes the proceedings and conclusions from the inaugural meeting of the Electron Microscopy Validation Task Force organized by the Unified Data Resource for 3DEM (http://www.emdatabank.org) and held at Rutgers University in New Brunswick, NJ on September 28 and 29, 2010. At the workshop, a group of scientists involved in collecting electron microscopy data, using the data to determine three-dimensional electron microscopy (3DEM) density maps, and building molecular models into the maps explored how to assess maps, models, and other data that are deposited into the Electron Microscopy Data Bank and Protein Data Bank public data archives. The specific recommendations resulting from the workshop aim to increase the impact of 3DEM in biology and medicine.

    View Publication Page
    Grigorieff Lab
    03/20/09 | Pentameric assembly of potassium channel tetramerization domain-containing protein 5.
    Dementieva IS, Tereshko V, McCrossan ZA, Solomaha E, Araki D, Xu C, Grigorieff N, Goldstein SA
    Journal of Molecular Biology. 2009 Mar 20;387(1):175-91. doi: 10.1016/j.jmb.2009.01.030

    We report the X-ray crystal structure of human potassium channel tetramerization domain-containing protein 5 (KCTD5), the first member of the family to be so characterized. Four findings were unexpected. First, the structure reveals assemblies of five subunits while tetramers were anticipated; pentameric stoichiometry is observed also in solution by scanning transmission electron microscopy mass analysis and analytical ultracentrifugation. Second, the same BTB (bric-a-brac, tramtrack, broad complex) domain surface mediates the assembly of five KCTD5 and four voltage-gated K(+) (Kv) channel subunits; four amino acid differences appear crucial. Third, KCTD5 complexes have well-defined N- and C-terminal modules separated by a flexible linker that swivels by approximately 30 degrees; the C-module shows a new fold and is required to bind Golgi reassembly stacking protein 55 with approximately 1 microM affinity, as judged by surface plasmon resonance and ultracentrifugation. Fourth, despite the homology reflected in its name, KCTD5 does not impact the operation of Kv4.2, Kv3.4, Kv2.1, or Kv1.2 channels.

    View Publication Page
    Grigorieff Lab
    09/22/15 | Peptide dimer structure in an Aβ(1-42) fibril visualized with cryo-EM.
    Schmidt M, Rohou A, Lasker K, Yadav JK, Schiene-Fischer C, Fändrich M, Grigorieff N
    Proceedings of the National Academy of Sciences of the United States of America. 2015 Sep 22;112(38):11858-63. doi: 10.1073/pnas.1503455112

    Alzheimer's disease (AD) is a fatal neurodegenerative disorder in humans and the main cause of dementia in aging societies. The disease is characterized by the aberrant formation of β-amyloid (Aβ) peptide oligomers and fibrils. These structures may damage the brain and give rise to cerebral amyloid angiopathy, neuronal dysfunction, and cellular toxicity. Although the connection between AD and Aβ fibrillation is extensively documented, much is still unknown about the formation of these Aβ aggregates and their structures at the molecular level. Here, we combined electron cryomicroscopy, 3D reconstruction, and integrative structural modeling methods to determine the molecular architecture of a fibril formed by Aβ(1-42), a particularly pathogenic variant of Aβ peptide. Our model reveals that the individual layers of the Aβ fibril are formed by peptide dimers with face-to-face packing. The two peptides forming the dimer possess identical tilde-shaped conformations and interact with each other by packing of their hydrophobic C-terminal β-strands. The peptide C termini are located close to the main fibril axis, where they produce a hydrophobic core and are surrounded by the structurally more flexible and charged segments of the peptide N termini. The observed molecular architecture is compatible with the general chemical properties of Aβ peptide and provides a structural basis for various biological observations that illuminate the molecular underpinnings of AD. Moreover, the structure provides direct evidence for a steric zipper within a fibril formed by full-length Aβ peptide.

    View Publication Page