Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
general_search_page-panel_pane_1 | views_panes

10 Publications

Showing 1-10 of 10 results
Your Criteria:
    Singer Lab
    01/09/14 | Background free imaging of single mRNAs in live cells using split fluorescent proteins.
    Wu B, Chen J, Singer RH
    Scientific Reports. 2014 Jan 9;4:3615. doi: 10.1038/srep03615

    We describe a technique for imaging single mRNAs in living cells based on fluorescent protein (FP) complementation. We employ the high affinity interaction between the bacterial phage MS2/PP7 coat proteins and their respective RNA binding motifs as an RNA scaffold to bring two halves of a split-FP together to image single reporter mRNAs without background fluorescence.

    View Publication Page
    Singer Lab
    03/01/14 | Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons.
    Fallini C, Rouanet JP, Donlin-Asp PG, Guo P, Zhang H, Singer RH, Rossoll W, Bassell GJ
    Developmental Neurobiology. 2014 Mar;74(3):319-32. doi: 10.1002/dneu.22111

    Spinal muscular atrophy (SMA) is a lethal neurodegenerative disease specifically affecting spinal motor neurons. SMA is caused by the homozygous deletion or mutation of the survival of motor neuron 1 (SMN1) gene. The SMN protein plays an essential role in the assembly of spliceosomal ribonucleoproteins. However, it is still unclear how low levels of the ubiquitously expressed SMN protein lead to the selective degeneration of motor neurons. An additional role for SMN in the regulation of the axonal transport of mRNA-binding proteins (mRBPs) and their target mRNAs has been proposed. Indeed, several mRBPs have been shown to interact with SMN, and the axonal levels of few mRNAs, such as the β-actin mRNA, are reduced in SMA motor neurons. In this study we have identified the β-actin mRNA-binding protein IMP1/ZBP1 as a novel SMN-interacting protein. Using a combination of biochemical assays and quantitative imaging techniques in primary motor neurons, we show that IMP1 associates with SMN in individual granules that are actively transported in motor neuron axons. Furthermore, we demonstrate that IMP1 axonal localization depends on SMN levels, and that SMN deficiency in SMA motor neurons leads to a dramatic reduction of IMP1 protein levels. In contrast, no difference in IMP1 protein levels was detected in whole brain lysates from SMA mice, further suggesting neuron specific roles of SMN in IMP1 expression and localization. Taken together, our data support a role for SMN in the regulation of mRNA localization and axonal transport through its interaction with mRBPs such as IMP1.

    View Publication Page
    Singer Lab
    04/20/14 | Efficient Bayesian-based multiview deconvolution.
    Preibisch S, Amat F, Stamataki E, Sarov M, Singer RH, Myers E, Tomancak P
    Nature Methods. 2014 Apr 20;11:645-8. doi: 10.1038/nmeth.2929

    Light-sheet fluorescence microscopy is able to image large specimens with high resolution by capturing the samples from multiple angles. Multiview deconvolution can substantially improve the resolution and contrast of the images, but its application has been limited owing to the large size of the data sets. Here we present a Bayesian-based derivation of multiview deconvolution that drastically improves the convergence time, and we provide a fast implementation using graphics hardware.

    View Publication Page
    Singer Lab
    05/19/14 | Gene regulation: the HSP70 gene jumps when shocked.
    Vera M, Singer RH
    Current Biology. 2014 May 19;24(10):R396-8. doi: 10.1016/j.cub.2014.03.070

    Limited chromosome mobility has been observed in mammalian interphase nuclei. Live imaging shows unidirectional and actin-dependent movement of HSP70 loci towards speckles upon heat shock, resulting in enhanced transcription. This adds further impetus to understanding compartmentalization of function in the nucleus.

    View Publication Page
    Singer Lab
    06/01/14 | Heterogeneity in periodontitis prevalence in the Hispanic Community Health Study/Study of Latinos.
    Sanders AE, Campbell SM, Mauriello SM, Beck JD, Jimenez MC, Kaste LM, Singer RH, Beaver SM, Finlayson TL, Badner VM
    Annals of Epidemiology. 2014 Jun;24(6):455-62. doi: 10.1016/j.annepidem.2014.02.018

    PURPOSE: The aim of the study was to examine acculturation and established risk factors in explaining variation in periodontitis prevalence among Hispanic/Latino subgroups.

    METHODS: Participants were 12,730 dentate adults aged 18-74 years recruited into the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) from four U.S. field centers between 2008 and 2011. A standardized periodontal assessment measured probing pocket depth and gingival recession at six sites per tooth for up to 28 teeth. Periodontitis was defined according to the Centers for Disease Control and Prevention and American Academy of Periodontology case classifications developed for population surveillance. Covariates included acculturation indicators and established periodontitis risk factors. Survey estimation procedures took account of the complex sampling design. Adjusted multivariate binomial regression estimated prevalence ratios and 95% confidence limits (CLs).

    RESULTS: Unadjusted prevalence of moderate and severe periodontitis was 38.5% and ranged from 24.7% among Dominicans to 52.1% among Cubans. Adjusted prevalence ratios for subgroups relative to Dominicans were as follows: (1) 1.34 (95% CL, 1.13-1.58) among South Americans; (2) 1.37 (95% CL, 1.17-1.61) among Puerto Ricans; (3) 1.43 (95% CL, 1.25-1.64) among Mexicans; (4) 1.53 (95% CL, 1.32-1.76) among Cubans; and (5) 1.55 (95% CL, 1.35-1.78) among Central Americans.

    CONCLUSIONS: Heterogeneity in prevalence of moderate/severe periodontitis among Hispanic/Latino subpopulations was not explained by acculturation or periodontitis risk factors.

    View Publication Page
    10/24/14 | Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution.
    Chen B, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA, Liu Z, English BP, Mimori-Kiyosue Y, Romero DP, Ritter AT, Lippincott-Schwartz J, Fritz-Laylin L, Mullins RD, Mitchell DM, Bembenek JN, Reymann A, Böhme R, Grill SW, Wang JT, Seydoux G, Tulu US, Kiehart DP, Betzig E
    Science. 2014 Oct 24;346(6208):1257998. doi: 10.1126/science.1257998

    Although fluorescence microscopy provides a crucial window into the physiology of living specimens, many biological processes are too fragile, are too small, or occur too rapidly to see clearly with existing tools. We crafted ultrathin light sheets from two-dimensional optical lattices that allowed us to image three-dimensional (3D) dynamics for hundreds of volumes, often at subsecond intervals, at the diffraction limit and beyond. We applied this to systems spanning four orders of magnitude in space and time, including the diffusion of single transcription factor molecules in stem cell spheroids, the dynamic instability of mitotic microtubules, the immunological synapse, neutrophil motility in a 3D matrix, and embryogenesis in Caenorhabditis elegans and Drosophila melanogaster. The results provide a visceral reminder of the beauty and the complexity of living systems.

    View Publication Page
    Singer Lab
    10/23/14 | Photoswitchable red fluorescent protein with a large stokes shift.
    Piatkevich KD, English BP, Malashkevich VN, Xiao H, Almo SC, Singer RH, Verkhusha VV
    Chemistry & Biology. 2014 Oct 23;21(10):1402-14. doi: 10.1016/j.chembiol.2014.08.010

    A subclass of fluorescent proteins (FPs), large Stokes shift (LSS) FP, are characterized by increased spread between excitation and emission maxima. We report a photoswitchable variant of a red FP with an LSS, PSLSSmKate, which initially exhibits excitation and emission at 445 and 622 nm, but violet irradiation photoswitches PSLSSmKate into a common red form with excitation and emission at 573 and 621 nm. We characterize spectral, photophysical, and biochemical properties of PSLSSmKate in vitro and in mammalian cells and determine its crystal structure in the LSS form. Mass spectrometry, mutagenesis, and spectroscopy of PSLSSmKate allow us to propose molecular mechanisms for the LSS, pH dependence, and light-induced chromophore transformation. We demonstrate the applicability of PSLSSmKate to superresolution photoactivated localization microscopy and protein dynamics in live cells. Given its promising properties, we expect that PSLSSmKate-like phenotype will be further used for photoactivatable imaging and tracking multiple populations of intracellular objects.

    View Publication Page
    Singer Lab
    01/24/14 | Single β-actin mRNA detection in neurons reveals a mechanism for regulating its translatability.
    Buxbaum AR, Wu B, Singer RH
    Science. 2014 Jan 24;343(6169):419-22. doi: 10.1126/science.1242939

    The physical manifestation of learning and memory formation in the brain can be expressed by strengthening or weakening of synaptic connections through morphological changes. Local actin remodeling underlies some forms of plasticity and may be facilitated by local β-actin synthesis, but dynamic information is lacking. In this work, we use single-molecule in situ hybridization to demonstrate that dendritic β-actin messenger RNA (mRNA) and ribosomes are in a masked, neuron-specific form. Chemically induced long-term potentiation prompts transient mRNA unmasking, which depends on factors active during synaptic activity. Ribosomes and single β-actin mRNA motility increase after stimulation, indicative of release from complexes. Hence, the single-molecule assays we developed allow for the quantification of activity-induced unmasking and availability for active translation. Further, our work demonstrates that β-actin mRNA and ribosomes are in a masked state that is alleviated by stimulation.

    View Publication Page
    Singer Lab
    09/16/14 | The translation elongation factor eEF1A1 couples transcription to translation during heat shock response.
    Vera M, Pani B, Griffiths LA, Muchardt C, Abbott CM, Singer RH, Nudler E
    eLife. 2014 Sep 16;3:e03164. doi: 10.7554/eLife.03164

    Translation elongation factor eEF1A has a well-defined role in protein synthesis. In this study, we demonstrate a new role for eEF1A: it participates in the entire process of the heat shock response (HSR) in mammalian cells from transcription through translation. Upon stress, isoform 1 of eEF1A rapidly activates transcription of HSP70 by recruiting the master regulator HSF1 to its promoter. eEF1A1 then associates with elongating RNA polymerase II and the 3'UTR of HSP70 mRNA, stabilizing it and facilitating its transport from the nucleus to active ribosomes. eEF1A1-depleted cells exhibit severely impaired HSR and compromised thermotolerance. In contrast, tissue-specific isoform 2 of eEF1A does not support HSR. By adjusting transcriptional yield to translational needs, eEF1A1 renders HSR rapid, robust, and highly selective; thus, representing an attractive therapeutic target for numerous conditions associated with disrupted protein homeostasis, ranging from neurodegeneration to cancer.

    View Publication Page
    01/24/14 | Visualization of dynamics of single endogenous mRNA labeled in live mouse.
    Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C, Lopez-Jones M, Meng X, Singer RH
    Science. 2014 Jan 24;343(6169):422-4. doi: 10.1126/science.1239200

    The transcription and transport of messenger RNA (mRNA) are critical steps in regulating the spatial and temporal components of gene expression, but it has not been possible to observe the dynamics of endogenous mRNA in primary mammalian tissues. We have developed a transgenic mouse in which all β-actin mRNA is fluorescently labeled. We found that β-actin mRNA in primary fibroblasts localizes predominantly by diffusion and trapping as single mRNAs. In cultured neurons and acute brain slices, we found that multiple β-actin mRNAs can assemble together, travel by active transport, and disassemble upon depolarization by potassium chloride. Imaging of brain slices revealed immediate early induction of β-actin transcription after depolarization. Studying endogenous mRNA in live mouse tissues provides insight into its dynamic regulation within the context of the cellular and tissue microenvironment.

    View Publication Page