Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lee Tzumin Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

21 Publications

Showing 11-20 of 21 results
Your Criteria:
    Looger Lab
    03/29/19 | Multiplex imaging relates quantal glutamate release to presynaptic Ca homeostasis at multiple synapses in situ.
    Jensen TP, Zheng K, Cole N, Marvin JS, Looger LL, Rusakov DA
    Nature Communications. 2019 03 29;10(1):1414. doi: 10.1038/s41467-019-09216-8

    Information processing by brain circuits depends on Ca-dependent, stochastic release of the excitatory neurotransmitter glutamate. Whilst optical glutamate sensors have enabled detection of synaptic discharges, understanding presynaptic machinery requires simultaneous readout of glutamate release and nanomolar presynaptic Ca in situ. Here, we find that the fluorescence lifetime of the red-shifted Ca indicator Cal-590 is Ca-sensitive in the nanomolar range, and employ it in combination with green glutamate sensors to relate quantal neurotransmission to presynaptic Ca kinetics. Multiplexed imaging of individual and multiple synapses in identified axonal circuits reveals that glutamate release efficacy, but not its short-term plasticity, varies with time-dependent fluctuations in presynaptic resting Ca or spike-evoked Ca entry. Within individual presynaptic boutons, we find no nanoscopic co-localisation of evoked presynaptic Ca entry with the prevalent glutamate release site, suggesting loose coupling between the two. The approach enables a better understanding of release machinery at central synapses.

    View Publication Page

    Studies of perceptual decision-making have often assumed that the main role of sensory cortices is to provide sensory input to downstream processes that accumulate and drive behavioral decisions. We performed a systematic comparison of neural activity in primary visual (V1) to secondary visual and retrosplenial cortices, as mice performed a task where they should accumulate pulsatile visual cues through time to inform a navigational decision. Even in V1, only a small fraction of neurons had sensory-like responses to cues. Instead, in all areas neurons were sequentially active, and contained information ranging from sensory to cognitive, including cue timings, evidence, place/time, decision and reward outcome. Per-cue sensory responses were amplitude-modulated by various cognitive quantities, notably accumulated evidence. This inspired a multiplicative feedback-loop circuit hypothesis that proposes a more intricate role of sensory areas in the accumulation process, and furthermore explains a surprising observation that perceptual discrimination deviates from Weber-Fechner Law.Highlights / eTOC BlurbMice made navigational decisions based on accumulating pulsatile visual cuesThe bulk of neural activity in visual cortices was sequential and beyond-sensoryAccumulated pulse-counts modulated sensory (cue) responses, suggesting feedbackA feedback-loop neural circuit explains behavioral deviations from Weber’s LawHighlights / eTOC BlurbIn a task where navigation was informed by accumulated pulsatile visual evidence, neural activity in visual cortices predominantly coded for cognitive variables across multiple timescales, including outside of a visual processing context. Even sensory responses to visual pulses were amplitude-modulated by accumulated pulse counts and other variables, inspiring a multiplicative feedback-loop circuit hypothesis that in turn explained behavioral deviations from Weber-Fechner Law.

    View Publication Page
    03/08/19 | Neural evolution of context-dependent fly song.
    Ding Y, Lillvis JL, Cande J, Berman GJ, Arthur BJ, Long X, Xu M, Dickson BJ, Stern DL
    Current Biology : CB. 2019 Mar 08;29(7):1089-99. doi: 10.1016/j.cub.2019.02.019

    It is unclear where in the nervous system evolutionary changes tend to occur. To localize the source of neural evolution that has generated divergent behaviors, we developed a new approach to label and functionally manipulate homologous neurons across Drosophila species. We examined homologous descending neurons that drive courtship song in two species that sing divergent song types and localized relevant evolutionary changes in circuit function downstream of the intrinsic physiology of these descending neurons. This evolutionary change causes different species to produce divergent motor patterns in similar social contexts. Artificial stimulation of these descending neurons drives multiple song types, suggesting that multifunctional properties of song circuits may facilitate rapid evolution of song types.

    View Publication Page
    Truman LabSinger Lab
    03/26/19 | Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS.
    Lacin H, Chen H, Long X, Singer RH, Lee T, Truman JW
    Elife. 2019 Mar 26;8:. doi: 10.7554/eLife.43701

    The vast majority of the adult fly ventral nerve cord is composed of 34 hemilineages, which are clusters of lineally related neurons. Neurons in these hemilineages use one of the three fast-acting neurotransmitters (acetylcholine, GABA, or glutamate) for communication. We generated a comprehensive neurotransmitter usage map for the entire ventral nerve cord. We did not find any cases of neurons using more than one neurotransmitter, but found that the acetylcholine specific gene ChAT is transcribed in many glutamatergic and GABAergic neurons, but these transcripts typically do not leave the nucleus and are not translated. Importantly, our work uncovered a simple rule: All neurons within a hemilineage use the same neurotransmitter. Thus, neurotransmitter identity is acquired at the stem cell level. Our detailed transmitter- usage/lineage identity map will be a great resource for studying the developmental basis of behavior and deciphering how neuronal circuits function to regulate behavior.

    View Publication Page
    03/01/19 | Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder.
    Schulmann A, Ryu E, Goncalves V, Rollins B, Christiansen M, Frye MA, Biernacka J, Vawter MP
    Mol Neuropsychiatry. 2019 Mar 0;5(1):13-27. doi: 10.1159/000495658

    Mitochondrial dysfunction has been associated with schizophrenia (SZ) and bipolar disorder (BD). This review examines recent publications and novel associations between mitochondrial genes and SZ and BD. Associations of nuclear-encoded mitochondrial variants with SZ were found using gene- and pathway-based approaches. Two control region mitochondrial DNA (mtDNA) SNPs, T16519C and T195C, both showed an association with SZ and BD. A review of 4 studies of A15218G located in the cytochrome B oxidase gene (CYTB, SZ = 11,311, control = 35,735) shows a moderate association with SZ ( = 2.15E-03). Another mtDNA allele A12308G was nominally associated with psychosis in BD type I subjects and SZ. The first published study testing the epistatic interaction between nuclear-encoded and mitochondria-encoded genes demonstrated evidence for potential interactions between mtDNA and the nuclear genome for BD. A similar analysis for the risk of SZ revealed significant joint effects (34 nuclear-mitochondria SNP pairs with joint effect ≤ 5E-07) and significant enrichment of projection neurons. The mitochondria-encoded gene CYTB was found in both the epistatic interactions for SZ and BD and the single SNP association of SZ. Future efforts considering population stratification and polygenic risk scores will test the role of mitochondrial variants in psychiatric disorders.

    View Publication Page
    Svoboda Lab
    05/15/19 | Prediction of choice from competing mechanosensory and choice-memory cues during active tactile decision making.
    Campagner D, Evans MH, Chlebikova K, Colins-Rodriguez A, Loft MS, Fox S, Pettifer D, Humphries MD, Svoboda K, Petersen RS
    The Journal of Neuroscience : the official journal of the Society for Neuroscience. 2019 May 15;39(20):3921-33. doi: 10.1523/JNEUROSCI.2217-18.2019

    Perceptual decision making is an active process where animals move their sense organs to extract task-relevant information. To investigate how the brain translates sensory input into decisions during active sensation, we developed a mouse active touch task where the mechanosensory input can be precisely measured and that challenges animals to use multiple mechanosensory cues. Male mice were trained to localise a pole using a single whisker and to report their decision by selecting one of three choices. Using high-speed imaging and machine vision we estimated whisker-object mechanical forces at millisecond resolution. Mice solved the task by a sensory-motor strategy where both the strength and direction of whisker bending were informative cues to pole location. We found competing influences of immediate sensory input and choice memory on mouse choice. On correct trials, choice could be predicted from the direction and strength of whisker bending, but not from previous choice. In contrast, on error trials, choice could be predicted from previous choice but not from whisker bending. This study shows that animal choices during active tactile decision making can be predicted from mechanosenory and choice-memory signals; and provides a new task, well-suited for future study of the neural basis of active perceptual decisions.Due to the difficulty of measuring the sensory input to moving sense organs, active perceptual decision making remains poorly understood. The whisker system provides a way forward since it is now possible to measure the mechanical forces due to whisker-object contact during behaviour. Here we train mice in a novel behavioural task that challenges them to use rich mechanosensory cues, but can be performed using one whisker and enables task-relevant mechanical forces to be precisely estimated. This approach enables rigorous study of how sensory cues translate into action during active, perceptual decision making. Our findings provide new insight into active touch and how sensory/internal signals interact to determine behavioural choices.

    View Publication Page
    Svoboda LabMouseLight
    03/12/19 | Single-neuron axonal reconstruction: The search for a wiring diagram of the brain.
    Economo MN, Winnubst J, Bas E, Ferreira TA, Chandrashekar J
    The Journal of Comparative Neurology. 2019 Mar 12:. doi: 10.1002/cne.24674

    Reconstruction of the axonal projection patterns of single neurons has been an important tool for understanding both the diversity of cell types in the brain and the logic of information flow between brain regions. Innovative approaches now enable the complete reconstruction of axonal projection patterns of individual neurons with vastly increased throughput. Here we review how advances in genetic, imaging, and computational techniques have been exploited for axonal reconstruction. We also discuss how new innovations could enable the integration of genetic and physiological information with axonal morphology for producing a census of cell types in the mammalian brain at scale. This article is protected by copyright. All rights reserved.

    View Publication Page
    03/12/19 | Split-QF system for fine-tuned transgene expression in Drosophila.
    Riabinina O, Vernon SW, Dickson BJ, Baines RA
    Genetics. 2019 Mar 12;212(1):53-63. doi: 10.1534/genetics.119.302034

    The Q-system is a binary expression system that works well across species. Here we report the development and demonstrate applications of a split-QF system that drives strong expression in , is repressible by QS and inducible by a small non-toxic molecule quinic acid. The split-QF system is fully compatible with existing split-GAL4 and split-LexA lines, thus greatly expanding the range of possible advanced intersectional experiments and anatomical, physiological and behavioural assays in and in other organisms.

    View Publication Page
    03/25/19 | The Kinetochore-Microtubule Coupling Machinery Is Repurposed in Sensory Nervous System Morphogenesis
    Dhanya K. Cheerambathur , Bram Prevo , Tiffany-Lynn Chow , Neil Hattersley , Shaohe Wang , Zhiling Zhao , Taekyung Kim , Adina Gerson-Gurwitz , Karen Oegema , Rebecca Green , Arshad Desai
    Developmental Cell. 03/2019;48:864-872.e7. doi: https://doi.org/10.1016/j.devcel.2019.02.002

    Summary Dynamic coupling of microtubule ends to kinetochores, built on the centromeres of chromosomes, directs chromosome segregation during cell division. Here, we report that the evolutionarily ancient kinetochore-microtubule coupling machine, the KMN (Knl1/Mis12/Ndc80-complex) network, plays a critical role in neuronal morphogenesis. We show that the KMN network concentrates in microtubule-rich dendrites of developing sensory neurons that collectively extend in a multicellular morphogenetic event that occurs during C. elegans embryogenesis. Post-mitotic degradation of KMN components in sensory neurons disrupts dendritic extension, leading to patterning and functional defects in the sensory nervous system. Structure-guided mutations revealed that the molecular interface that couples kinetochores to spindle microtubules also functions in neuronal development. These results identify a cell-division-independent function for the chromosome-segregation machinery and define a microtubule-coupling-dependent event in sensory nervous system morphogenesis.

    View Publication Page
    03/25/19 | The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins
    Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V, Pett C, Yu J, Woods EC, Kramer JR, Westerlind U, Dorigo O, Bertozzi CR
    Proceedings of the National Academy of Sciences. Sep-04-2019;116(15):7278 - 7287. doi: 10.1073/pnas.1813020116

    Mucin domains are densely O-glycosylated modular protein domains that are found in a wide variety of cell surface and secreted proteins. Mucin-domain glycoproteins are known to be key players in a host of human diseases, especially cancer, wherein mucin expression and glycosylation patterns are altered. Mucin biology has been difficult to study at the molecular level, in part, because methods to manipulate and structurally characterize mucin domains are lacking. Here, we demonstrate that secreted protease of C1 esterase inhibitor (StcE), a bacterial protease from Escherichia coli, cleaves mucin domains by recognizing a discrete peptide- and glycan-based motif. We exploited StcE's unique properties to improve sequence coverage, glycosite mapping, and glycoform analysis of recombinant human mucins by mass spectrometry. We also found that StcE digests cancer-associated mucins from cultured cells and from ascites fluid derived from patients with ovarian cancer. Finally, using StcE, we discovered that sialic acid-binding Ig-type lectin-7 (Siglec-7), a glycoimmune checkpoint receptor, selectively binds sialomucins as biological ligands, whereas the related receptor Siglec-9 does not. Mucin-selective proteolysis, as exemplified by StcE, is therefore a powerful tool for the study of mucin domain structure and function.

     

    View Publication Page