Filter
Publication Date
Type of Publication
30 Publications
Showing 11-20 of 30 resultsFor more than 100 years, the fruit fly has been one of the most studied model organisms. Here, we present a single-cell atlas of the adult fly, Tabula , that includes 580,000 nuclei from 15 individually dissected sexed tissues as well as the entire head and body, annotated to >250 distinct cell types. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types between tissues, such as blood and muscle cells, reveals rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the community and serves as a reference to study genetic perturbations and disease models at single-cell resolution.
Plexins exhibit multitudinous, evolutionarily conserved functions in neural development. How Plexins employ their diverse structural motifs in vivo to perform distinct roles is unclear. We previously reported that Plexin B (PlexB) controls multiple steps during the assembly of the olfactory circuit (Li et al., 2018b). Here, we systematically mutagenized structural motifs of PlexB and examined the function of these variants in these multiple steps: axon fasciculation, trajectory choice, and synaptic partner selection. We found that the extracellular Sema domain is essential for all three steps, the catalytic site of the intracellular RapGAP is engaged in none, and the intracellular GTPase-binding motifs are essential for trajectory choice and synaptic partner selection, but are dispensable for fasciculation. Moreover, extracellular PlexB cleavage serves as a regulatory mechanism of PlexB signaling. Thus, the divergent roles of PlexB motifs in distinct steps of neural development contribute to its functional versatility in neural circuit assembly.
Cell-surface proteins (CSPs) mediate intercellular communication throughout the lives of multicellular organisms. However, there are no generalizable methods for quantitative CSP profiling in specific cell types in vertebrate tissues. Here, we present in situ cell-surface proteome extraction by extracellular labeling (iPEEL), a proximity labeling method in mice that enables spatiotemporally precise labeling of cell-surface proteomes in a cell-type-specific environment in native tissues for discovery proteomics. Applying iPEEL to developing and mature cerebellar Purkinje cells revealed differential enrichment in CSPs with post-translational protein processing and synaptic functions in the developing and mature cell-surface proteomes, respectively. A proteome-instructed in vivo loss-of-function screen identified a critical, multifaceted role for Armh4 in Purkinje cell dendrite morphogenesis. Armh4 overexpression also disrupts dendrite morphogenesis; this effect requires its conserved cytoplasmic domain and is augmented by disrupting its endocytosis. Our results highlight the utility of CSP profiling in native mammalian tissues for identifying regulators of cell-surface signaling.
Much focus has shifted towards understanding how glial dysfunction contributes to age-related neurodegeneration due to the critical roles glial cells play in maintaining healthy brain function. Cell-cell interactions, which are largely mediated by cell-surface proteins, control many critical aspects of development and physiology; as such, dysregulation of glial cell-surface proteins in particular is hypothesized to play an important role in age-related neurodegeneration. However, it remains technically difficult to profile glial cell-surface proteins in intact brains. Here, we applied a cell-surface proteomic profiling method to glial cells from intact brains in Drosophila, which enabled us to fully profile cell-surface proteomes in-situ, preserving native cell-cell interactions that would otherwise be omitted using traditional proteomics methods. Applying this platform to young and old flies, we investigated how glial cell-surface proteomes change during aging. We identified candidate genes predicted to be involved in brain aging, including several associated with neural development and synapse wiring molecules not previously thought to be particularly active in glia. Through a functional genetic screen, we identified one surface protein, DIP-β, which is down-regulated in old flies and can increase fly lifespan when overexpressed in adult glial cells. We further performed whole-head single-nucleus RNA-seq, and revealed that DIP-β overexpression mainly impacts glial and fat cells. We also found that glial DIP-β overexpression was associated with improved cell-cell communication, which may contribute to the observed lifespan extension. Our study is the first to apply in-situ cell-surface proteomics to glial cells in Drosophila, and to identify DIP-β as a potential glial regulator of brain aging.Competing Interest StatementThe authors have declared no competing interest.The original mass spectra and the protein sequence databases used for searches have been deposited in the public proteomics repository MassIVE (http://massive.ucsd.edu) (username: MSV000099083; password: glial). These datasets will be made public upon acceptance of the manuscript. Original proteomic data prior to analyses is provided in the Supplementary Table 1. snRNA-seq data has been deposited to NCBI Gene Expression Omnibus (GSE308135).
In this work, we find that CD8 T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49CD8 regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8 T cells efficiently eliminated pathogenic gliadin-specific CD4 T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIRCD8 T cells, but not CD4 regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49CD8 T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8 T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.
Brain function requires precise neural circuit assembly during development. Establishing a functional circuit involves multiple coordinated steps ranging from neural cell fate specification to proper matching between pre- and post-synaptic partners. How neuronal lineage and birth timing influence wiring specificity remains an open question. Recent findings suggest that the relationships between lineage, birth timing, and wiring specificity vary in different neuronal circuits. In this review, we summarize our current understanding of the cellular, molecular, and developmental mechanisms linking neuronal lineage and birth timing to wiring specificity in a few specific systems in Drosophila and mice, and review different methods employed to explore these mechanisms.
In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.
Synapses have undergone significant diversification and adaptation, contributing to the complexity of the central nervous system. Understanding their molecular architecture is essential for deciphering the brain's functional evolution. While nicotinic acetylcholine receptors (nAchRs) are widely distributed across metazoan brains, their associated protein networks remain poorly characterized. Using in vivo proximity labeling, we generated proteomic maps of subunit-specific nAchR interactomes in developing and mature brains. Our findings reveal a developmental expansion and reconfiguration of the nAchR interactome. Proteome profiling with genetic perturbations showed that removing individual nAchR subunits consistently triggers compensatory shifts in receptor subtypes, highlighting mechanisms of synaptic plasticity. We also identified the Rho-GTPase regulator Still life (Sif) as a key organizer of cholinergic synapses, with loss of Sif disrupting their molecular composition and structural integrity. These results provide molecular insights into the development and plasticity of central cholinergic synapses, advancing our understanding of synaptic identity conservation and divergence.
NAD(+) and NADH play crucial roles in a variety of biological processes including energy metabolism, mitochondrial functions, and gene expression. Multiple studies have indicated that NAD(+) administration can profoundly decrease oxidative cell death as well as ischemic and traumatic brain injury, suggesting NAD(+) metabolism as a promising therapeutic target for cerebral ischemia and head injury. Cumulating evidence has suggested that NAD(+) can produce its protective effects by multiple mechanisms, including preventing mitochondrial alterations, enhancing energy metabolism, preventing virtually all forms of cell death including apoptosis, necrosis and autophagy, inhibiting inflammation, directly increasing antioxidation capacity of cells and tissues, and activating SIRT1. Increasing evidence has also suggested that NADH metabolism is a potential therapeutic target for treating several neurological disorders. A number of studies have further indicated that multiple NAD(+)-dependent enzymes such as sirtuins, polymerase(ADP-ribose) polymerases (PARPs) and CD38 mediate cell death and multiple biological processes. In this article, an overview of the recent findings regarding the roles of NAD(+)/NADH and NAD(+)-dependent enzymes in cell death and ischemic brain injury is provided. These findings have collectively indicated that NAD(+)/NADH and NAD(+)-dependent enzymes play fundamental roles in oxidative stress-induced cell death and ischemic brain injury, which may become promising therapeutic targets for brain ischemia and multiple other neurological disorders.
No abstract available.
