Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
More in this page
janelia7_blocks-janelia7_fake_breadcrumb | block
Li Lab / Publications
general_search_page-panel_pane_1 | views_panes

28 Publications

Showing 11-20 of 28 results
07/09/20 | Nurturing Undergraduate Researchers in Biomedical Sciences.
Li J, Luo L
Cell. 07/2020;182(1):1-4. doi: 10.1016/j.cell.2020.05.008

Undergraduate researchers are the next-generation scientists. Here, we call for more attention from our community to the proper training of undergraduates in biomedical research laboratories. By dissecting common pitfalls, we suggest how to better mentor undergraduates and prepare them for flourishing careers.

View Publication Page
04/06/20 | Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting.
Li H, Li T, Horns F, Li J, Xie Q, Xu C, Wu B, Kebschull JM, McLaughlin CN, Kolluru SS, Jones RC, Vacek D, Xie A, Luginbuhl DJ, Quake SR, Luo L
Curr Biol. 04/2020;30(7):1189-1198.e5. doi: 10.1016/j.cub.2020.01.049

The regulatory mechanisms by which neurons coordinate their physiology and connectivity are not well understood. The Drosophila olfactory receptor neurons (ORNs) provide an excellent system to investigate this question. Each ORN type expresses a unique olfactory receptor, or a combination thereof, and sends their axons to a stereotyped glomerulus. Using single-cell RNA sequencing, we identified 33 transcriptomic clusters for ORNs and mapped 20 to their glomerular types, demonstrating that transcriptomic clusters correspond well with anatomically and physiologically defined ORN types. Each ORN type expresses hundreds of transcription factors. Transcriptome-instructed genetic analyses revealed that (1) one broadly expressed transcription factor (Acj6) only regulates olfactory receptor expression in one ORN type and only wiring specificity in another type, (2) one type-restricted transcription factor (Forkhead) only regulates receptor expression, and (3) another type-restricted transcription factor (Unplugged) regulates both events. Thus, ORNs utilize diverse strategies and complex regulatory networks to coordinate their physiology and connectivity.

View Publication Page
01/23/20 | Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators.
Li J, Han S, Li H, Udeshi ND, Svinkina T, Mani DR, Xu C, Guajardo R, Xie Q, Li T, Luginbuhl DJ, Wu B, McLaughlin CN, Xie A, Kaewsapsak P, Quake SR, Carr SA, Ting AY, Luo L
Cell. 01/2020;180(2):373-386.e15. doi: 10.1016/j.cell.2019.12.029

Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.

View Publication Page
08/06/19 | Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner olfactory neurons.
Xie Q, Wu B, Li J, Xu C, Li H, Luginbuhl DJ, Wang X, Ward A, Luo L
Proc Natl Acad Sci U S A. 08/2019;116(32):16068-16073. doi: 10.1073/pnas.1905832116

Our understanding of the mechanisms of neural circuit assembly is far from complete. Identification of wiring molecules with novel mechanisms of action will provide insights into how complex and heterogeneous neural circuits assemble during development. In the olfactory system, 50 classes of olfactory receptor neurons (ORNs) make precise synaptic connections with 50 classes of partner projection neurons (PNs). Here, we performed an RNA interference screen for cell surface molecules and identified the leucine-rich repeat-containing transmembrane protein known as Fish-lips (Fili) as a novel wiring molecule in the assembly of the olfactory circuit. Fili contributes to the precise axon and dendrite targeting of a small subset of ORN and PN classes, respectively. Cell-type-specific expression and genetic analyses suggest that Fili sends a transsynaptic repulsive signal to neurites of nonpartner classes that prevents their targeting to inappropriate glomeruli in the antennal lobe.

View Publication Page
06/21/19 | Functional divergence of Plexin B structural motifs in distinct steps of olfactory circuit assembly.
Guajardo R, Luginbuhl DJ, Han S, Luo L, Li J
Elife. 06/2019;8:. doi: 10.7554/eLife.48594

Plexins exhibit multitudinous, evolutionarily conserved functions in neural development. How Plexins employ their diverse structural motifs in vivo to perform distinct roles is unclear. We previously reported that Plexin B (PlexB) controls multiple steps during the assembly of the olfactory circuit (Li et al., 2018b). Here, we systematically mutagenized structural motifs of PlexB and examined the function of these variants in these multiple steps: axon fasciculation, trajectory choice, and synaptic partner selection. We found that the extracellular Sema domain is essential for all three steps, the catalytic site of the intracellular RapGAP is engaged in none, and the intracellular GTPase-binding motifs are essential for trajectory choice and synaptic partner selection, but are dispensable for fasciculation. Moreover, extracellular PlexB cleavage serves as a regulatory mechanism of PlexB signaling. Thus, the divergent roles of PlexB motifs in distinct steps of neural development contribute to its functional versatility in neural circuit assembly.

View Publication Page
08/23/18 | Stepwise wiring of the Drosophila olfactory map requires specific Plexin B levels
Li J, Guajardo R, Xu C, Wu B, Li H, Li T, Luginbuhl DJ, Xie X, Luo L
Elife. 08/2018;7:. doi: 10.7554/eLife.39088

The precise assembly of a neural circuit involves many consecutive steps. The conflict between a limited number of wiring molecules and the complexity of the neural network impels each molecule to execute multiple functions at different steps. Here, we examined the cell-type specific distribution of endogenous levels of axon guidance receptor Plexin B (PlexB) in the developing antennal lobe, the first olfactory processing center in . We found that different classes of olfactory receptor neurons (ORNs) express PlexB at different levels in two wiring steps - axonal trajectory choice and subsequent target selection. In line with its temporally distinct patterns, the proper levels of PlexB control both steps in succession. Genetic interactions further revealed that the effect of high-level PlexB is antagonized by its canonical partner Sema2b. Thus, PlexB plays a multifaceted role in instructing the assembly of the olfactory circuit through temporally-regulated expression patterns and expression level-dependent effects.

View Publication Page
06/01/18 | Proximity labeling: spatially resolved proteomic mapping for neurobiology.
Han S, Li J, Ting AY
Curr Opin Neurobiol. 06/2018;50:17-23. doi: 10.1016/j.conb.2017.10.015

Understanding signaling pathways in neuroscience requires high-resolution maps of the underlying protein networks. Proximity-dependent biotinylation with engineered enzymes, in combination with mass spectrometry-based quantitative proteomics, has emerged as a powerful method to dissect molecular interactions and the localizations of endogenous proteins. Recent applications to neuroscience have provided insights into the composition of sub-synaptic structures, including the synaptic cleft and inhibitory post-synaptic density. Here we compare the different enzymes and small-molecule probes for proximity labeling in the context of cultured neurons and tissue, review existing studies, and provide technical suggestions for the in vivo application of proximity labeling.

View Publication Page
04/13/18 | Linking neuronal lineage and wiring specificity.
Li H, Shuster SA, Li J, Luo L
Neural Dev. 04/2018;13(1):5. doi: 10.1186/s13064-018-0102-0

Brain function requires precise neural circuit assembly during development. Establishing a functional circuit involves multiple coordinated steps ranging from neural cell fate specification to proper matching between pre- and post-synaptic partners. How neuronal lineage and birth timing influence wiring specificity remains an open question. Recent findings suggest that the relationships between lineage, birth timing, and wiring specificity vary in different neuronal circuits. In this review, we summarize our current understanding of the cellular, molecular, and developmental mechanisms linking neuronal lineage and birth timing to wiring specificity in a few specific systems in Drosophila and mice, and review different methods employed to explore these mechanisms.

View Publication Page
11/16/17 | Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing.
Li H, Horns F, Wu B, Xie Q, Li J, Li T, Luginbuhl DJ, Quake SR, Luo L
Cell. 11/2017;171(5):1206-1220.e22. doi: 10.1016/j.cell.2017.10.019

The definition of neuronal type and how it relates to the transcriptome are open questions. Drosophila olfactory projection neurons (PNs) are among the best-characterized neuronal types: different PN classes target dendrites to distinct olfactory glomeruli, while PNs of the same class exhibit indistinguishable anatomical and physiological properties. Using single-cell RNA sequencing, we comprehensively characterized the transcriptomes of most PN classes and unequivocally mapped transcriptomes to specific olfactory function for six classes. Transcriptomes of closely related PN classes exhibit the largest differences during circuit assembly but become indistinguishable in adults, suggesting that neuronal subtype diversity peaks during development. Transcription factors and cell-surface molecules are the most differentially expressed genes between classes and are highly informative in encoding cell identity, enabling us to identify a new lineage-specific transcription factor that instructs PN dendrite targeting. These findings establish that neuronal transcriptomic identity corresponds with anatomical and physiological identity defined by connectivity and function.

View Publication Page
08/17/17 | Neurobiology: A bitter-sweet symphony.
Li J, Luo L
Nature. 08/2017;548(7667):285-287. doi: 10.1038/nature23537

No abstract available.

View Publication Page