Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Lippincottschwartz Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

4079 Publications

Showing 2331-2340 of 4079 results
04/30/24 | Mitochondrially-associated actin waves maintain organelle homeostasis and equitable inheritance.
Coscia SM, Moore AS, Wong YC, Holzbaur EL
Curr Opin Cell Biol. 2024 Apr 30;88:102364. doi: 10.1016/j.ceb.2024.102364

First identified in dividing cells as revolving clusters of actin filaments, these are now understood as mitochondrially-associated actin waves that are active throughout the cell cycle. These waves are formed from the polymerization of actin onto a subset of mitochondria. Within minutes, this F-actin depolymerizes while newly formed actin filaments assemble onto neighboring mitochondria. In interphase, actin waves locally fragment the mitochondrial network, enhancing mitochondrial content mixing to maintain organelle homeostasis. In dividing cells actin waves spatially mix mitochondria in the mother cell to ensure equitable partitioning of these organelles between daughter cells. Progress has been made in understanding the consequences of actin cycling as well as the underlying molecular mechanisms, but many questions remain, and here we review these elements. Also, we draw parallels between mitochondrially-associated actin cycling and cortical actin waves. These dynamic systems highlight the remarkable plasticity of the actin cytoskeleton.

View Publication Page
Freeman Lab
04/01/16 | MLlib: Machine learning in Apache Spark.
Meng X, Bradley J, Yavus B, Sparks E, Venkataraman S, Liu D, Freeman J, Tsai DB, Amde M, Owen S, Xin D, Franklin MJ, Zadeh R, Zaharia M, Talwalkar A
Journal of Machine Learning Research. 2016 Apr 01;17:1-7

Apache Spark is a popular open-source platform for large-scale data processing that is well-suited for iterative machine learning tasks. In this paper we present MLlib, Spark’s open-source distributed machine learning library. MLlib provides efficient functionality for a wide range of learning settings and includes several underlying statistical, optimization, and linear algebra primitives. Shipped with Spark, MLlib supports several languages and provides a high-level API that leverages Spark’s rich ecosystem to simplify the development of end-to-end machine learning pipelines. MLlib has experienced a rapid growth due to its vibrant open-source community of over 140 contributors, and includes extensive documentation to support further growth and to let users quickly get up to speed. 

View Publication Page
07/01/96 | Modal aproximation for the electromagnetic field of a near-field optical probe.
Grober RD, Rutherford T, Harris TD
Applied Optics. 1996 Jul 1;35(19):3488-95. doi: 10.1364/AO.35.003488

A formalism is given in which the optical field generated by a near-field optical aperture is described as an analytic expansion over a complete set of optical modes. This vectoral solution preserves the divergent behavior of the near field and the dipolar nature of the far field. Numerical calculation of the fields requires only evaluation of a well behaved, one-dimensional integral. The formalism is directly applicable to experiments in near-field scanning optical microscopy when relatively flat samples are evaluated.

View Publication Page
Kainmueller Lab
09/24/10 | Model-based auto-segmentation of knee bones and cartilage in MRI data.
Seim H, Kainmueller D, Lamecker H, Bindernagel M, Malinowski J, Zachow S
Medical Image Analysis for the Clinic - A Grand Challenge, MICCAI 2010, the 13th International Conference on Medical Image Computing and Computer Assisted Intervention. 2010 Sep 24:

We present a method for fully automatic segmentation of the bones and cartilages of the human knee from MRI data. Based on statistical shape models and graph-based optimization, first the femoral and tibial bone surfaces are reconstructed. Starting from the bone sur- faces the cartilages are segmented simultaneously with a multi object technique using prior knowledge on the variation of cartilage thickness. We validate our method on 40 clinical MRI datasets acquired before knee replacement. 

View Publication Page
Kainmueller Lab
09/07/08 | Model-based autosegmentation of the central brain of the honeybee, Apis mellifera, using active statistical shape models.
Singer J, Lienhard M, Seim H, Kainmueller D, Kuss A, Lamecker H, Zachow S, Menzel R, Rybak J
Neuroinformatics 2008. 2008 Sep 07:. doi: 10.3389/conf.neuro.11.2008.01.064

The Honeybee Brain Atlas serves as 3D database and communicative platform to accumulate structural data, i.e. reconstructed neurons, derived from confocal scans (Brandt et al., 2005) (www.neurobiologie.fu-berlin.de/beebrain/) (1). Transforming neurons into the atlas requires manual segmentation of neuropils within confocal images, a time-consuming task requiring expertise in identifying biological structures which can result in different outcomes from various segmenters.

View Publication Page
04/21/21 | Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit
Aitchison L, Russell L, Packer AM, Yan J, Castonguay P, Häusser M, Turaga SC, I. Guyon , U. V. Luxburg , S. Bengio , H. Wallach , R. Fergus , S. Vishwanathan , R. Garnett
Advances in Neural Information Processing Systems:

Population activity measurement by calcium imaging can be combined with cellular resolution optogenetic activity perturbations to enable the mapping of neural connectivity in vivo. This requires accurate inference of perturbed and unperturbed neural activity from calcium imaging measurements, which are noisy and indirect, and can also be contaminated by photostimulation artifacts. We have developed a new fully Bayesian approach to jointly inferring spiking activity and neural connectivity from in vivo all-optical perturbation experiments. In contrast to standard approaches that perform spike inference and analysis in two separate maximum-likelihood phases, our joint model is able to propagate uncertainty in spike inference to the inference of connectivity and vice versa. We use the framework of variational autoencoders to model spiking activity using discrete latent variables, low-dimensional latent common input, and sparse spike-and-slab generalized linear coupling between neurons. Additionally, we model two properties of the optogenetic perturbation: off-target photostimulation and photostimulation transients. Using this model, we were able to fit models on 30 minutes of data in just 10 minutes. We performed an all-optical circuit mapping experiment in primary visual cortex of the awake mouse, and use our approach to predict neural connectivity between excitatory neurons in layer 2/3. Predicted connectivity is sparse and consistent with known correlations with stimulus tuning, spontaneous correlation and distance.

 

 

View Publication Page
12/04/17 | Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit.
Aitchison L, Russell L, Packer AM, Yan J, Castonguaye P, Häusser M, Turaga SC
31st Conference on Neural Information Processing Systems (NIPS 2017). 2017 Dec 04:

Population activity measurement by calcium imaging can be combined with cellular resolution optogenetic activity perturbations to enable the mapping of neural connectivity in vivo. This requires accurate inference of perturbed and unperturbed neural activity from calcium imaging measurements, which are noisy and indirect, and can also be contaminated by photostimulation artifacts. We have developed a new fully Bayesian approach to jointly inferring spiking activity and neural connectivity from in vivo all-optical perturbation experiments. In contrast to standard approaches that perform spike inference and analysis in two separate maximum-likelihood phases, our joint model is able to propagate uncertainty in spike inference to the inference of connectivity and vice versa. We use the framework of variational autoencoders to model spiking activity using discrete latent variables, low-dimensional latent common input, and sparse spike-and-slab generalized linear coupling between neurons. Additionally, we model two properties of the optogenetic perturbation: off-target photostimulation and photostimulation transients. Our joint model includes at least two sets of discrete random variables; to avoid the dramatic slowdown typically caused by being unable to differentiate such variables, we introduce two strategies that have not, to our knowledge, been used with variational autoencoders. Using this model, we were able to fit models on 30 minutes of data in just 10 minutes. We performed an all-optical circuit mapping experiment in primary visual cortex of the awake mouse, and use our approach to predict neural connectivity between excitatory neurons in layer 2/3. Predicted connectivity is sparse and consistent with known correlations with stimulus tuning, spontaneous correlation and distance.

View Publication Page
Turner LabFitzgerald LabFunke Lab
12/12/23 | Model-Based Inference of Synaptic Plasticity Rules
Yash Mehta , Danil Tyulmankov , Adithya E. Rajagopalan , Glenn C. Turner , James E. Fitzgerald , Jan Funke
bioRxiv. 2023 Dec 12:. doi: 10.1101/2023.12.11.571103

Understanding learning through synaptic plasticity rules in the brain is a grand challenge for neuroscience. Here we introduce a novel computational framework for inferring plasticity rules from experimental data on neural activity trajectories and behavioral learning dynamics. Our methodology parameterizes the plasticity function to provide theoretical interpretability and facilitate gradient-based optimization. For instance, we use Taylor series expansions or multilayer perceptrons to approximate plasticity rules, and we adjust their parameters via gradient descent over entire trajectories to closely match observed neural activity and behavioral data. Notably, our approach can learn intricate rules that induce long nonlinear time-dependencies, such as those incorporating postsynaptic activity and current synaptic weights. We validate our method through simulations, accurately recovering established rules, like Oja’s, as well as more complex hypothetical rules incorporating reward-modulated terms. We assess the resilience of our technique to noise and, as a tangible application, apply it to behavioral data from Drosophila during a probabilistic reward-learning experiment. Remarkably, we identify an active forgetting component of reward learning in flies that enhances the predictive accuracy of previous models. Overall, our modeling framework provides an exciting new avenue to elucidate the computational principles governing synaptic plasticity and learning in the brain.

View Publication Page
03/18/18 | Model-free quantification and visualization of colocalization in fluorescence images.
Taylor AB, Ioannou MS, Aaron J, Chew T
Cytometry. Part A : the journal of the International Society for Analytical Cytology. 2018 Mar 13:. doi: 10.1002/cyto.a.23356

The spatial association between fluorescently tagged biomolecules in situ provides valuable insight into their biological relationship. Within the limits of diffraction, such association can be measured using either Pearson's Correlation Coefficient (PCC) or Spearman's Rank Coefficient (SRC), which are designed to measure linear and monotonic correlations, respectively. However, the relationship between real biological signals is often more complex than these measures assume, rendering their results difficult to interpret. Here, we have adapted methods from the field of information theory to measure the association between two probes' concentrations based on their statistical dependence. Our approach is mathematically more general than PCC or SRC, making no assumptions about the type of relationship between the probes. We show that when applied to biological images, our measures provide more intuitive results that are also more robust to outliers and the presence of multiple relationships than PCC or SRC. We also devise a display technique to highlight regions in the input images where the probes' association is higher versus lower. We expect that our methods will allow biologists to more accurately and robustly quantify and visualize the association between two probes in a pair of fluorescence images. © 2018 International Society for Advancement of Cytometry.

View Publication Page
06/15/15 | Modeling oscillations and spiral waves in Dictyostelium populations.
Noorbakhsh J, Schwab DJ, Sgro AE, Gregor T, Mehta P
Phys Rev E Stat Nonlin Soft Matter Phys. 06/2015;91(6):062711. doi: 10.1103/PhysRevE.91.062711

Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales-from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.

View Publication Page